These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
609 related articles for article (PubMed ID: 27801295)
1. Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model. Sbaraini N; Guedes RL; Andreis FC; Junges Â; de Morais GL; Vainstein MH; de Vasconcelos AT; Schrank A BMC Genomics; 2016 Oct; 17(Suppl 8):736. PubMed ID: 27801295 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide DNA methylation analysis of Metarhizium anisopliae during tick mimicked infection condition. Sbaraini N; Bellini R; Penteriche AB; Guedes RLM; Garcia AWA; Gerber AL; Vainstein MH; de Vasconcelos ATR; Schrank A; Staats CC BMC Genomics; 2019 Nov; 20(1):836. PubMed ID: 31711419 [TBL] [Abstract][Full Text] [Related]
3. Orchestrated Biosynthesis of the Secondary Metabolite Cocktails Enables the Producing Fungus to Combat Diverse Bacteria. Sun Y; Chen B; Li X; Yin Y; Wang C mBio; 2022 Oct; 13(5):e0180022. PubMed ID: 36000736 [TBL] [Abstract][Full Text] [Related]
4. Polyketides produced by the entomopathogenic fungus Metarhizium anisopliae induce Candida albicans growth. Sbaraini N; Hu J; Roux I; Phan CS; Motta H; Rezaee H; Schrank A; Chooi YH; Staats CC Fungal Genet Biol; 2021 Jul; 152():103568. PubMed ID: 33991663 [TBL] [Abstract][Full Text] [Related]
5. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. Gao Q; Jin K; Ying SH; Zhang Y; Xiao G; Shang Y; Duan Z; Hu X; Xie XQ; Zhou G; Peng G; Luo Z; Huang W; Wang B; Fang W; Wang S; Zhong Y; Ma LJ; St Leger RJ; Zhao GP; Pei Y; Feng MG; Xia Y; Wang C PLoS Genet; 2011 Jan; 7(1):e1001264. PubMed ID: 21253567 [TBL] [Abstract][Full Text] [Related]
7. The deletion of chiMaD1, a horizontally acquired chitinase of Metarhizium anisopliae, led to higher virulence towards the cattle tick (Rhipicephalus microplus). Sbaraini N; Junges Â; de Oliveira ES; Webster A; Vainstein MH; Staats CC; Schrank A FEMS Microbiol Lett; 2021 Jun; 368(12):. PubMed ID: 34100915 [TBL] [Abstract][Full Text] [Related]
8. Genome sequence and comparative analysis of clavicipitaceous insect-pathogenic fungus Aschersonia badia with Metarhizium spp. Agrawal Y; Narwani T; Subramanian S BMC Genomics; 2016 May; 17():367. PubMed ID: 27189621 [TBL] [Abstract][Full Text] [Related]
9. Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. Lind AL; Wisecaver JH; Lameiras C; Wiemann P; Palmer JM; Keller NP; Rodrigues F; Goldman GH; Rokas A PLoS Biol; 2017 Nov; 15(11):e2003583. PubMed ID: 29149178 [TBL] [Abstract][Full Text] [Related]
10. Transcription Factor Repurposing Offers Insights into Evolution of Biosynthetic Gene Cluster Regulation. Wang W; Drott M; Greco C; Luciano-Rosario D; Wang P; Keller NP mBio; 2021 Aug; 12(4):e0139921. PubMed ID: 34281384 [TBL] [Abstract][Full Text] [Related]
11. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. Staats CC; Junges A; Guedes RL; Thompson CE; de Morais GL; Boldo JT; de Almeida LG; Andreis FC; Gerber AL; Sbaraini N; da Paixão RL; Broetto L; Landell M; Santi L; Beys-da-Silva WO; Silveira CP; Serrano TR; de Oliveira ES; Kmetzsch L; Vainstein MH; de Vasconcelos AT; Schrank A BMC Genomics; 2014 Sep; 15():822. PubMed ID: 25263348 [TBL] [Abstract][Full Text] [Related]
12. Genome-Wide Analysis of Secondary Metabolite Gene Clusters in O Sbaraini N; Andreis FC; Thompson CE; Guedes RLM; Junges Â; Campos T; Staats CC; Vainstein MH; Ribeiro de Vasconcelos AT; Schrank A Front Microbiol; 2017; 8():1063. PubMed ID: 28659888 [TBL] [Abstract][Full Text] [Related]
13. The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species. Pattemore JA; Hane JK; Williams AH; Wilson BA; Stodart BJ; Ash GJ BMC Genomics; 2014 Aug; 15(1):660. PubMed ID: 25102932 [TBL] [Abstract][Full Text] [Related]
14. Pathogenicity analysis and comparative genomics reveal the different infection strategies between the generalist Metarhizium anisopliae and the specialist Metarhizium acridum. Du Y; Li J; Chen S; Xia Y; Jin K Pest Manag Sci; 2024 Feb; 80(2):820-836. PubMed ID: 37794279 [TBL] [Abstract][Full Text] [Related]
15. Metabolic Conservation and Diversification of Xu YJ; Luo F; Li B; Shang Y; Wang C Front Microbiol; 2016; 7():2020. PubMed ID: 28018335 [TBL] [Abstract][Full Text] [Related]
16. Genomic analyses and transcriptional profiles of the glycoside hydrolase family 18 genes of the entomopathogenic fungus Metarhizium anisopliae. Junges Â; Boldo JT; Souza BK; Guedes RL; Sbaraini N; Kmetzsch L; Thompson CE; Staats CC; de Almeida LG; de Vasconcelos AT; Vainstein MH; Schrank A PLoS One; 2014; 9(9):e107864. PubMed ID: 25232743 [TBL] [Abstract][Full Text] [Related]
17. Metarhizium anisopliae conidial responses to lipids from tick cuticle and tick mammalian host surface. Ment D; Gindin G; Soroker V; Glazer I; Rot A; Samish M J Invertebr Pathol; 2010 Feb; 103(2):132-9. PubMed ID: 20036669 [TBL] [Abstract][Full Text] [Related]
18. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nielsen JC; Grijseels S; Prigent S; Ji B; Dainat J; Nielsen KF; Frisvad JC; Workman M; Nielsen J Nat Microbiol; 2017 Apr; 2():17044. PubMed ID: 28368369 [TBL] [Abstract][Full Text] [Related]
19. Genomic and transcriptomic survey of an endophytic fungus Calcarisporium arbuscula NRRL 3705 and potential overview of its secondary metabolites. Cheng JT; Cao F; Chen XA; Li YQ; Mao XM BMC Genomics; 2020 Jun; 21(1):424. PubMed ID: 32580753 [TBL] [Abstract][Full Text] [Related]