BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27801467)

  • 1. Preparation of brookite TiO
    Xu J; Wu S; Jin J; Peng T
    Nanoscale; 2016 Nov; 8(44):18771-18781. PubMed ID: 27801467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dye-sensitized solar cells based on anatase- and brookite-TiO2: enhancing performance through optimization of phase composition, morphology and device architecture.
    Khazaei M; Mohammadi MR; Li Y
    Nanotechnology; 2024 Jun; ():. PubMed ID: 38906118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brookite TiO2 nanoparticle films for dye-sensitized solar cells.
    Magne C; Cassaignon S; Lancel G; Pauporté T
    Chemphyschem; 2011 Sep; 12(13):2461-7. PubMed ID: 21751330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Pot Synthesis of Cu-Nanocluster-Decorated Brookite TiO
    Jin J; Luo J; Zan L; Peng T
    Chemphyschem; 2017 Nov; 18(22):3230-3239. PubMed ID: 28719067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine Tuning of Nanocrystal and Pore Sizes of TiO2 Submicrospheres toward High Performance Dye-Sensitized Solar Cells.
    Li ZQ; Ding Y; Mo LE; Hu LH; Wu JH; Dai SY
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22277-83. PubMed ID: 26393366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic-free Anatase TiO₂ Paste for Efficient Plastic Dye-Sensitized Solar Cells and Low Temperature Processed Perovskite Solar Cells.
    Fu N; Huang C; Liu Y; Li X; Lu W; Zhou L; Peng F; Liu Y; Huang H
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19431-8. PubMed ID: 26284590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of TiO2 Particle Size on the Performance of Flexible Dye Sensitized Solar Cells.
    Li ZY; Akhtar MS; Yang OB
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6675-9. PubMed ID: 26716227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailored Synthesis of Porous TiO₂ Nanocubes and Nanoparallelepipeds with Exposed {111} Facets and Mesoscopic Void Space: A Superior Candidate for Efficient Dye-Sensitized Solar Cells.
    Amoli V; Bhat S; Maurya A; Banerjee B; Bhaumik A; Sinha AK
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26022-35. PubMed ID: 26574644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of TiCl4 post-treatment condition on TiO2 electrode for enhancement photovoltaic efficiency of dye-sensitized solar cells.
    Eom TS; Kim KH; Bark CW; Choi HW
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7705-9. PubMed ID: 25942852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Pot Synthesis of Mesoporous TiO₂ Micropheres and Its Application for High-Efficiency Dye-Sensitized Solar Cells.
    Li ZQ; Que YP; Mo LE; Chen WC; Ding Y; Ma YM; Jiang L; Hu LH; Dai SY
    ACS Appl Mater Interfaces; 2015 May; 7(20):10928-34. PubMed ID: 25945694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A double layered TiO2 photoanode consisting of hierarchical flowers and nanoparticles for high-efficiency dye-sensitized solar cells.
    Wu WQ; Xu YF; Rao HS; Su CY; Kuang DB
    Nanoscale; 2013 May; 5(10):4362-9. PubMed ID: 23571714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells.
    Wang W; Zhang H; Wang R; Feng M; Chen Y
    Nanoscale; 2014 Feb; 6(4):2390-6. PubMed ID: 24435106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of nanorod-like anatase TiO2 nanocrystals and their photovoltaic properties.
    Zhang Q; Li S; Li Y; Wang H
    J Nanosci Nanotechnol; 2011 Dec; 11(12):11109-13. PubMed ID: 22409066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting Photovoltaic Performance of Dye-Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co-Doped-TiO2 Photoanode.
    Lim SP; Pandikumar A; Lim HN; Ramaraj R; Huang NM
    Sci Rep; 2015 Jul; 5():11922. PubMed ID: 26146362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells.
    Shaikh SF; Mane RS; Min BK; Hwang YJ; Joo OS
    Sci Rep; 2016 Feb; 6():20103. PubMed ID: 26857963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres.
    Kondo Y; Yoshikawa H; Awaga K; Murayama M; Mori T; Sunada K; Bandow S; Iijima S
    Langmuir; 2008 Jan; 24(2):547-50. PubMed ID: 18088147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of a sea urchin-like rutile TiO
    Ri JH; Wu S; Jin J; Peng T
    Nanoscale; 2017 Nov; 9(46):18498-18506. PubMed ID: 29160892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoanode based on chain-shaped anatase TiO2 nanorods for high-efficiency dye-sensitized solar cells.
    Rui Y; Li Y; Wang H; Zhang Q
    Chem Asian J; 2012 Oct; 7(10):2313-20. PubMed ID: 22890917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous Synthesis of Highly Crystalline TiO
    Sanehira Y; Numata Y; Ikegami M; Miyasaka T
    ACS Appl Mater Interfaces; 2018 May; 10(20):17195-17202. PubMed ID: 29727154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell.
    Kilic B; Turkdogan S; Astam A; Ozer OC; Asgin M; Cebeci H; Urk D; Mucur SP
    Sci Rep; 2016 May; 6():27052. PubMed ID: 27243374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.