These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27801504)

  • 1. Analysis of 3D multi-layer microfluidic gradient generator.
    Ha JH; Kim TH; Lee JM; Ahrberg CD; Chung BG
    Electrophoresis; 2017 Jan; 38(2):270-277. PubMed ID: 27801504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices.
    Lin F; Saadi W; Rhee SW; Wang SJ; Mittal S; Jeon NL
    Lab Chip; 2004 Jun; 4(3):164-7. PubMed ID: 15159771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Microfluidic drifting"--implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device.
    Mao X; Waldeisen JR; Huang TJ
    Lab Chip; 2007 Oct; 7(10):1260-2. PubMed ID: 17896008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.
    Somaweera H; Haputhanthri SO; Ibraguimov A; Pappas D
    Analyst; 2015 Aug; 140(15):5029-38. PubMed ID: 26050759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of complex concentration profiles by partial diffusive mixing in multi-stream laminar flow.
    Zhou Y; Wang Y; Mukherjee T; Lin Q
    Lab Chip; 2009 May; 9(10):1439-48. PubMed ID: 19417912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid generation of spatially and temporally controllable long-range concentration gradients in a microfluidic device.
    Du Y; Shim J; Vidula M; Hancock MJ; Lo E; Chung BG; Borenstein JT; Khabiry M; Cropek DM; Khademhosseini A
    Lab Chip; 2009 Mar; 9(6):761-7. PubMed ID: 19255657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-layer based microfluidic concentration generator by hybrid serial and volumetric dilutions.
    Lee K; Kim C; Kim Y; Jung K; Ahn B; Kang JY; Oh KW
    Biomed Microdevices; 2010 Apr; 12(2):297-309. PubMed ID: 20077018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tuneable array of unique steady-state microfluidic gradients.
    Estes MD; Hurth C; Barrett M; Zenhausern F
    Phys Chem Chem Phys; 2013 Aug; 15(31):12805-14. PubMed ID: 23636584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration gradient generator using a convective-diffusive balance.
    Kang T; Han J; Lee KS
    Lab Chip; 2008 Jul; 8(7):1220-2. PubMed ID: 18584102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gradient-generating microfluidic device for cell biology.
    Chung BG; Manbachi A; Saadi W; Lin F; Jeon NL; Khademhosseini A
    J Vis Exp; 2007; (7):271. PubMed ID: 18989442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-controlled hydrodynamic focusing to generate multiple overlapping gradients of surface-immobilized proteins in microfluidic devices.
    Georgescu W; Jourquin J; Estrada L; Anderson AR; Quaranta V; Wikswo JP
    Lab Chip; 2008 Feb; 8(2):238-44. PubMed ID: 18231661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic geometric metering-based multi-reagent mixture generator for robust live cell screening array.
    Wang H; Kim J; Jayaraman A; Han A
    Biomed Microdevices; 2014 Dec; 16(6):887-96. PubMed ID: 25112181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated microfluidic device for two-dimensional combinatorial dilution.
    Jang YH; Hancock MJ; Kim SB; Selimović Š; Sim WY; Bae H; Khademhosseini A
    Lab Chip; 2011 Oct; 11(19):3277-86. PubMed ID: 21837312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A convection-driven long-range linear gradient generator with dynamic control.
    Wang H; Chen CH; Xiang Z; Wang M; Lee C
    Lab Chip; 2015 Mar; 15(6):1445-50. PubMed ID: 25599134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic device to establish concentration gradients using reagent density differences.
    Kong Q; Able RA; Dudu V; Vazquez M
    J Biomech Eng; 2010 Dec; 132(12):121012. PubMed ID: 21142326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Make it simple: long-term stable gradient generation in a microfluidic microdevice.
    Parittotokkaporn S; Dravid A; Bansal M; Aqrawe Z; Svirskis D; Suresh V; O'Carroll SJ
    Biomed Microdevices; 2019 Jul; 21(3):77. PubMed ID: 31346791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell micropatterning inside a microchannel and assays under a stable concentration gradient.
    Okuyama T; Yamazoe H; Seto Y; Suzuki H; Fukuda J
    J Biosci Bioeng; 2010 Aug; 110(2):230-7. PubMed ID: 20547384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A robust diffusion-based gradient generator for dynamic cell assays.
    Atencia J; Cooksey GA; Locascio LE
    Lab Chip; 2012 Jan; 12(2):309-16. PubMed ID: 22113489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic flow switching design using volume of fluid model.
    Chein R; Tsai SH
    Biomed Microdevices; 2004 Mar; 6(1):81-90. PubMed ID: 15307449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.