BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 27801818)

  • 21. Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting.
    Richardson AD; Berlyn GP
    Tree Physiol; 2002 May; 22(7):499-506. PubMed ID: 11986053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of leaf traits from reflectance measurements: comparison between methods based on vegetation indices and several versions of the PROSPECT model.
    Jiang J; Comar A; Burger P; Bancal P; Weiss M; Baret F
    Plant Methods; 2018; 14():23. PubMed ID: 29581726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The Study of the Spectral Model for Estimating Pigment Contents of Tobacco Leaves in Field].
    Ren X; Lao CL; Xu ZL; Jin Y; Guo Y; Li JH; Yang YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1654-9. PubMed ID: 26601385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patterns of leaf biochemical and structural properties of cerrado life forms: implications for remote sensing.
    Ball A; Sanchez-Azofeifa A; Portillo-Quintero C; Rivard B; Castro-Contreras S; Fernandes G
    PLoS One; 2015; 10(2):e0117659. PubMed ID: 25692675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating potential of leaf reflectance spectra to monitor plant genetic variation.
    Li C; Czyż EA; Halitschke R; Baldwin IT; Schaepman ME; Schuman MC
    Plant Methods; 2023 Oct; 19(1):108. PubMed ID: 37833725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectral response of cotton aphid- (Homoptera: Aphididae) and spider mite- (Acari: Tetranychidae) infested cotton: controlled studies.
    Reisig D; Godfrey L
    Environ Entomol; 2007 Dec; 36(6):1466-74. PubMed ID: 18284775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery.
    Zarco-Tejada PJ; Miller JR; Mohammed GH; Noland TL; Sampson PH
    J Environ Qual; 2002; 31(5):1433-41. PubMed ID: 12371159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Soil taxonomy on the basis of reflectance spectral characteristics].
    Liu HJ; Zhang B; Zhang YZ; Song KS; Wang ZM; Li F; Hu MG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):624-8. PubMed ID: 18536428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Simulation of Needle Reflectance Spectrum and Sensitivity Analysis of Biochemical Parameters of Pinus Yunnanensis in Different Healthy Status].
    Lin QN; Huang HG; Chen L; Yu LF; Huang K
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2538-45. PubMed ID: 30074360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing vegetation indices for remote chlorophyll measurement of white poplar and Chinese elm leaves with different adaxial and abaxial surfaces.
    Lu S; Lu X; Zhao W; Liu Y; Wang Z; Omasa K
    J Exp Bot; 2015 Sep; 66(18):5625-37. PubMed ID: 26034132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Study of photosynthetic characteristics of transgenic barley based on reflectance of single leaf].
    Sun CX; Yuan F; Zhang YL; Chen ZH; Chen LJ; Wu ZJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):204-8. PubMed ID: 22497160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation.
    Brackx M; Van Wittenberghe S; Verhelst J; Scheunders P; Samson R
    Environ Pollut; 2017 Jan; 220(Pt A):159-167. PubMed ID: 27720547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis.
    Cheng T; Rivard B; Sánchez-Azofeifa AG; Féret JB; Jacquemoud S; Ustin SL
    J Plant Physiol; 2012 Aug; 169(12):1134-42. PubMed ID: 22608180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of plant water content by spectral absorption features centered at 1,450 nm and 1,940 nm regions.
    Wang J; Xu R; Yang S
    Environ Monit Assess; 2009 Oct; 157(1-4):459-69. PubMed ID: 18853268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance- and absorbance-based approaches.
    Gitelson A; Solovchenko A
    J Photochem Photobiol B; 2018 Jan; 178():537-544. PubMed ID: 29247926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A robust vegetation index for remotely assessing chlorophyll content of dorsiventral leaves across several species in different seasons.
    Lu S; Lu F; You W; Wang Z; Liu Y; Omasa K
    Plant Methods; 2018; 14():15. PubMed ID: 29449875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of Stress in Cotton (Gossypium hirsutum L.) Caused by Aphids Using Leaf Level Hyperspectral Measurements.
    Chen T; Zeng R; Guo W; Hou X; Lan Y; Zhang L
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30149592
    [No Abstract]   [Full Text] [Related]  

  • 38. Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices.
    Fassnacht FE; Stenzel S; Gitelson AA
    J Plant Physiol; 2015 Mar; 176():210-7. PubMed ID: 25512167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Chlorophyll content nondestructive measurement method based on Vis/NIR spectroscopy].
    Li QB; Huang YW; Zhang GJ; Zhang QX; Li X; Wu JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3275-8. PubMed ID: 20210149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A theoretical analysis of the influence of heterogeneity in chlorophyll distribution on leaf reflectance.
    Barton CV
    Tree Physiol; 2001 Aug; 21(12-13):789-95. PubMed ID: 11498326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.