BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 27801818)

  • 41. A Monte Carlo study of the chlorophyll fluorescence emission and its effect on the leaf spectral reflectance and transmittance under various conditions.
    Susila P; Naus J
    Photochem Photobiol Sci; 2007 Aug; 6(8):894-902. PubMed ID: 17668120
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Temporal variation analysis for spectral reflectance of maize leaves using a fitting method].
    Qu Y; Liu SH; Li XW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jan; 33(1):131-5. PubMed ID: 23586241
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Plant Spectral Discrimination Based on Phenological Features].
    Zhang L; Zhao JL; Jia K; Li XS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Oct; 35(10):2836-40. PubMed ID: 26904828
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical properties of intact leaves for estimating chlorophyll concentration.
    Carter GA; Spiering BA
    J Environ Qual; 2002; 31(5):1424-32. PubMed ID: 12371158
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intensity-value corrections for integrating sphere measurements of solid samples measured behind glass.
    Johnson TJ; Bernacki BE; Redding RL; Su YF; Brauer CS; Myers TL; Stephan EG
    Appl Spectrosc; 2014; 68(11):1224-34. PubMed ID: 25280186
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hyperspectral imaging techniques for rapid identification of Arabidopsis mutants with altered leaf pigment status.
    Matsuda O; Tanaka A; Fujita T; Iba K
    Plant Cell Physiol; 2012 Jun; 53(6):1154-70. PubMed ID: 22470059
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Leaf development stages and ontogenetic changes in passionfruit (Passiflora edulis Sims.) are detected by narrowband spectral signal.
    Fernandes AM; Fortini EA; Müller LAC; Batista DS; Vieira LM; Silva PO; Amaral CHD; Poethig RS; Otoni WC
    J Photochem Photobiol B; 2020 Aug; 209():111931. PubMed ID: 32559646
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Method of Background Elimination for Wheat Leaves Based on the BPLT Model].
    Zhang C; Du PP; He Y; Liu F; Fang H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):213-9. PubMed ID: 27228770
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Spectral characteristics of Pinus tabulaeformis canopy with different damaged rates of needle leaf in western Liaoning Province, Northeast China].
    Feng R; Zhang YS; Yu WY; Wu JW; Wang PJ; Ji RP; Che YS; Zhu YN
    Ying Yong Sheng Tai Xue Bao; 2012 Jul; 23(7):1774-80. PubMed ID: 23173448
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The spectral characteristics and chlorophyll content at winter wheat growth stages].
    Sun H; Li MZ; Zhao Y; Zhang YE; Wang XM; Li XH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jan; 30(1):192-6. PubMed ID: 20302112
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analyses of Impact of Needle Surface Properties on Estimation of Needle Absorption Spectrum: Case Study with Coniferous Needle and Shoot Samples.
    Yang B; Knyazikhin Y; Lin Y; Yan K; Chen C; Park T; Choi S; Mõttus M; Rautiainen M; Myneni RB; Yan L
    Remote Sens (Basel); 2016 Jul; 8(7):563. PubMed ID: 28868160
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Temporal dynamics of spectral bioindicators evidence biological and ecological differences among functional types in a cork oak open woodland.
    Cerasoli S; Costa E Silva F; Silva JM
    Int J Biometeorol; 2016 Jun; 60(6):813-25. PubMed ID: 26449349
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis.
    Ullah S; Skidmore AK; Naeem M; Schlerf M
    Sci Total Environ; 2012 Oct; 437():145-52. PubMed ID: 22940042
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determining the Zn content of cherry in field using VNIR spectroscopy.
    Dedeoğlu M; Başayiğit L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):355-61. PubMed ID: 25970892
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Best hyperspectral indices for assessing leaf chlorophyll content in a degraded temperate vegetation.
    Peng Y; Fan M; Wang Q; Lan W; Long Y
    Ecol Evol; 2018 Jul; 8(14):7068-7078. PubMed ID: 30073068
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection of chlorophyll content based on optical properties of maize leaves.
    Pan W; Cheng X; Du R; Zhu X; Guo W
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 309():123843. PubMed ID: 38215563
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards.
    Wang J; Shen C; Liu N; Jin X; Fan X; Dong C; Xu Y
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28282884
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Association Mapping of Total Carotenoids in Diverse Soybean Genotypes Based on Leaf Extracts and High-Throughput Canopy Spectral Reflectance Measurements.
    Dhanapal AP; Ray JD; Singh SK; Hoyos-Villegas V; Smith JR; Purcell LC; King CA; Fritschi FB
    PLoS One; 2015; 10(9):e0137213. PubMed ID: 26368323
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Estimations of chlorophyll and water contents in live leaf of winter wheat with reflectance spectroscopy].
    Ji HY; Wang PX; Yan TL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):514-6. PubMed ID: 17554911
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new tool for direct non-invasive evaluation of chlorophyll a content from diffuse reflectance measurements.
    Muñoz-Ortuño M; Serra-Mora P; Herráez-Hernández R; Verdú-Andrés J; Campíns-Falcó P
    Sci Total Environ; 2017 Dec; 609():370-376. PubMed ID: 28753512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.