These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27801935)

  • 21. Metabolic and Phenotypic Characterization of Human Skin Fibroblasts After Forcing Oxidative Capacity.
    Pereira SP; Deus CM; Serafim TL; Cunha-Oliveira T; Oliveira PJ
    Toxicol Sci; 2018 Jul; 164(1):191-204. PubMed ID: 29945227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced Metabolic Capacity in Aged Primary Retinal Pigment Epithelium (RPE) is Correlated with Increased Susceptibility to Oxidative Stress.
    Rohrer B; Bandyopadhyay M; Beeson C
    Adv Exp Med Biol; 2016; 854():793-8. PubMed ID: 26427491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atorvastatin protects the proliferative ability of human umbilical vein endothelial cells inhibited by angiotensin II by changing mitochondrial energy metabolism.
    Chang Y; Li Y; Ye N; Guo X; Li Z; Sun G; Sun Y
    Int J Mol Med; 2018 Jan; 41(1):33-42. PubMed ID: 29115384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of chemical toxicity using mammalian mitochondrial electron transport particles.
    Knobeloch LM; Blondin GA; Read HW; Harkin JM
    Arch Environ Contam Toxicol; 1990; 19(6):828-35. PubMed ID: 2256703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of Primary Rat Hepatocytes for Prediction of Drug-Induced Mitochondrial Dysfunction.
    Liu C; Sekine S; Song B; Ito K
    Curr Protoc Toxicol; 2017 May; 72():14.16.1-14.16.10. PubMed ID: 28463418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hypoxia-inducible factor-1α activation improves renal oxygenation and mitochondrial function in early chronic kidney disease.
    Thomas JL; Pham H; Li Y; Hall E; Perkins GA; Ali SS; Patel HH; Singh P
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F282-F290. PubMed ID: 28331062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy metabolism in tumor cells.
    Moreno-Sánchez R; Rodríguez-Enríquez S; Marín-Hernández A; Saavedra E
    FEBS J; 2007 Mar; 274(6):1393-418. PubMed ID: 17302740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of Oxygen Consumption in Retina Ex Vivo Demonstrates Limited Reserve Capacity of Photoreceptor Mitochondria.
    Kooragayala K; Gotoh N; Cogliati T; Nellissery J; Kaden TR; French S; Balaban R; Li W; Covian R; Swaroop A
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8428-36. PubMed ID: 26747773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell energy budget platform for assessment of cell metabolism.
    Papkovsky DB; Zhdanov AV
    Methods Mol Biol; 2015; 1265():333-48. PubMed ID: 25634285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct Evidence of the Link Between Energetic Metabolism and Proliferation Capacity of Cancer Cells In Vitro.
    De Preter G; Danhier P; Porporato PE; Payen VL; Jordan BF; Sonveaux P; Gallez B
    Adv Exp Med Biol; 2016; 876():209-214. PubMed ID: 26782214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of mitochondria in cellular toxicity as a potential drug target.
    Wu D; Wang X; Sun H
    Cell Biol Toxicol; 2018 Apr; 34(2):87-91. PubMed ID: 29511917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tumor necrosis factor alpha increases aerobic glycolysis and reduces oxidative metabolism in prostate epithelial cells.
    Vaughan RA; Garcia-Smith R; Trujillo KA; Bisoffi M
    Prostate; 2013 Oct; 73(14):1538-46. PubMed ID: 23818177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Geissoschizine methyl ether protects oxidative stress-mediated cytotoxicity in neurons through the 'Neuronal Warburg Effect'.
    Sun J; Ren X; Qi W; Yuan D; Simpkins JW
    J Ethnopharmacol; 2016 Jul; 187():249-58. PubMed ID: 27114061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regional assessment of energy-producing metabolic activity in the endothelium of donor corneas.
    Greiner MA; Burckart KA; Wagoner MD; Schmidt GA; Reed CR; Liaboe CA; Flamme-Wiese MJ; Zimmerman MB; Mullins RF; Kardon RH; Goins KM; Aldrich BT
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):2803-10. PubMed ID: 26024071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitoenergetic Dysfunction Triggers a Rapid Compensatory Increase in Steady-State Glucose Flux.
    Liemburg-Apers DC; Schirris TJ; Russel FG; Willems PH; Koopman WJ
    Biophys J; 2015 Oct; 109(7):1372-86. PubMed ID: 26445438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Altered age-related changes in bioenergetic properties and mitochondrial morphology in fibroblasts from sporadic amyotrophic lateral sclerosis patients.
    Allen SP; Duffy LM; Shaw PJ; Grierson AJ
    Neurobiol Aging; 2015 Oct; 36(10):2893-903. PubMed ID: 26344876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of Glycolytic Flux and Mitochondrial Respiration in the Course of Autophagic Responses.
    Sica V; Bravo-San Pedro JM; Pietrocola F; Izzo V; Maiuri MC; Kroemer G; Galluzzi L
    Methods Enzymol; 2017; 588():155-170. PubMed ID: 28237099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic assays for probing mitochondrial apoptosis.
    Wang Z; Nicolas C; Fischmeister R; Brenner C
    Methods Mol Biol; 2015; 1265():407-14. PubMed ID: 25634292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing the bioenergetic profile of human pluripotent stem cells.
    Pfiffer V; Prigione A
    Methods Mol Biol; 2015; 1264():279-88. PubMed ID: 25631022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.