These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 27801985)

  • 21. Biotechnological Approaches for Generating Zinc-Enriched Crops to Combat Malnutrition.
    Hefferon K
    Nutrients; 2019 Jan; 11(2):. PubMed ID: 30678136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biofortification's contribution to mitigating micronutrient deficiencies.
    Li J; Martin C; Fernie A
    Nat Food; 2024 Jan; 5(1):19-27. PubMed ID: 38168782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biofortification-A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security.
    Dhaliwal SS; Sharma V; Shukla AK; Verma V; Kaur M; Shivay YS; Nisar S; Gaber A; Brestic M; Barek V; Skalicky M; Ondrisik P; Hossain A
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From harvest to health: challenges for developing biofortified staple foods and determining their impact on micronutrient status.
    Hotz C; McClafferty B
    Food Nutr Bull; 2007 Jun; 28(2 Suppl):S271-9. PubMed ID: 17658073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iron-biofortified staple food crops for improving iron status: a review of the current evidence.
    Finkelstein JL; Haas JD; Mehta S
    Curr Opin Biotechnol; 2017 Apr; 44():138-145. PubMed ID: 28131049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost?
    Bouis HE
    Proc Nutr Soc; 2003 May; 62(2):403-11. PubMed ID: 14506888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Are biofortified staple food crops improving vitamin A and iron status in women and children? New evidence from efficacy trials.
    De Moura FF; Palmer AC; Finkelstein JL; Haas JD; Murray-Kolb LE; Wenger MJ; Birol E; Boy E; Peña-Rosas JP
    Adv Nutr; 2014 Sep; 5(5):568-70. PubMed ID: 25469399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advocacy for scaling up biofortified crops for improved micronutrient status in Africa: approaches, achievements, challenges and lessons.
    Omari R; Zotor F; Tagwireyi J; Lokosang L
    Proc Nutr Soc; 2019 Nov; 78(4):567-575. PubMed ID: 30887944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential impact and cost-effectiveness of multi-biofortified rice in China.
    De Steur H; Gellynck X; Blancquaert D; Lambert W; Van Der Straeten D; Qaim M
    N Biotechnol; 2012 Feb; 29(3):432-42. PubMed ID: 22154941
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GM biofortified crops: potential effects on targeting the micronutrient intake gap in human populations.
    De Steur H; Mehta S; Gellynck X; Finkelstein JL
    Curr Opin Biotechnol; 2017 Apr; 44():181-188. PubMed ID: 28288329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Marker-assisted pyramiding of γ-tocopherol methyltransferase and glutamate formiminotransferase genes for development of biofortified sweet corn hybrids.
    Lv G; Chen X; Ying D; Li J; Fan Y; Wang B; Fang R
    PeerJ; 2022; 10():e13629. PubMed ID: 35818359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of micronutrients in crop plants.
    Blancquaert D; De Steur H; Gellynck X; Van Der Straeten D
    Ann N Y Acad Sci; 2017 Feb; 1390(1):59-73. PubMed ID: 27801945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition.
    Ashokkumar K; Govindaraj M; Karthikeyan A; Shobhana VG; Warkentin TD
    Front Genet; 2020; 11():414. PubMed ID: 32547594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally.
    Welch RM
    J Nutr; 2002 Mar; 132(3):495S-499S. PubMed ID: 11880578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Methodology for selecting areas for biofortified crop intervention].
    Rojas FA; Pachón H; Hyman GG; Varela AL
    Rev Panam Salud Publica; 2009 Nov; 26(5):419-28. PubMed ID: 20107693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transforming Nigerian Food Systems Through Their Backbones: Lessons From a Decade of Staple Crop Biofortification Programing.
    Birol E; Foley J; Herrington C; Misra R; Mudyahoto B; Pfeiffer W; Diressie MT; Ilona P
    Food Nutr Bull; 2023 Sep; 44(1_suppl):S14-S26. PubMed ID: 36016479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects.
    Gupta PK; Balyan HS; Sharma S; Kumar R
    Theor Appl Genet; 2021 Jan; 134(1):1-35. PubMed ID: 33136168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving the Dietary Vitamin A Content of Rural Communities in South Africa by Replacing Non-Biofortified white Maize and Sweet Potato with Biofortified Maize and Sweet Potato in Traditional Dishes.
    Govender L; Pillay K; Siwela M; Modi AT; Mabhaudhi T
    Nutrients; 2019 May; 11(6):. PubMed ID: 31141908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofortification of staple food crops.
    Nestel P; Bouis HE; Meenakshi JV; Pfeiffer W
    J Nutr; 2006 Apr; 136(4):1064-7. PubMed ID: 16549478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biofortified crops to alleviate micronutrient malnutrition.
    Mayer JE; Pfeiffer WH; Beyer P
    Curr Opin Plant Biol; 2008 Apr; 11(2):166-70. PubMed ID: 18314378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.