BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27802058)

  • 1. Engineered Recognition of Tetravalent Zirconium and Thorium by Chelator-Protein Systems: Toward Flexible Radiotherapy and Imaging Platforms.
    Captain I; Deblonde GJ; Rupert PB; An DD; Illy MC; Rostan E; Ralston CY; Strong RK; Abergel RJ
    Inorg Chem; 2016 Nov; 55(22):11930-11936. PubMed ID: 27802058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution Thermodynamics and Kinetics of Metal Complexation with a Hydroxypyridinone Chelator Designed for Thorium-227 Targeted Alpha Therapy.
    Deblonde GJ; Lohrey TD; Booth CH; Carter KP; Parker BF; Larsen Å; Smeets R; Ryan OB; Cuthbertson AS; Abergel RJ
    Inorg Chem; 2018 Nov; 57(22):14337-14346. PubMed ID: 30372069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxypyridinonate complex stability of group (IV) metals and tetravalent f-block elements: the key to the next generation of chelating agents for radiopharmaceuticals.
    Sturzbecher-Hoehne M; Choi TA; Abergel RJ
    Inorg Chem; 2015 Apr; 54(7):3462-8. PubMed ID: 25799124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution thermodynamic stability of complexes formed with the octadentate hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO): a critical feature for efficient chelation of lanthanide(IV) and actinide(IV) ions.
    Deblonde GJ; Sturzbecher-Hoehne M; Abergel RJ
    Inorg Chem; 2013 Aug; 52(15):8805-11. PubMed ID: 23855806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrocyclic 1,2-Hydroxypyridinone-Based Chelators as Potential Ligands for Thorium-227 and Zirconium-89 Radiopharmaceuticals.
    Woods JJ; Cosby AG; Wacker JN; Aguirre Quintana LM; Peterson A; Minasian SG; Abergel RJ
    Inorg Chem; 2023 Dec; 62(50):20721-20732. PubMed ID: 37590371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of 2,3-dihydroxyterephthalamides as M(IV) chelators.
    Gramer CJ; Raymond KN
    Inorg Chem; 2004 Oct; 43(20):6397-402. PubMed ID: 15446889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design, synthesis, and evaluation of tetrahydroxamic acid chelators for stable complexation of zirconium(IV).
    Guérard F; Lee YS; Brechbiel MW
    Chemistry; 2014 May; 20(19):5584-91. PubMed ID: 24740517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiolabelling of the octadentate chelators DFO* and oxoDFO* with zirconium-89 and gallium-68.
    Brandt M; Cowell J; Aulsebrook ML; Gasser G; Mindt TL
    J Biol Inorg Chem; 2020 Aug; 25(5):789-796. PubMed ID: 32661784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89.
    Pandya DN; Pailloux S; Tatum D; Magda D; Wadas TJ
    Chem Commun (Camb); 2015 Feb; 51(12):2301-3. PubMed ID: 25556851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative chelator for ⁸⁹Zr radiopharmaceuticals: radiolabeling and evaluation of 3,4,3-(LI-1,2-HOPO).
    Deri MA; Ponnala S; Zeglis BM; Pohl G; Dannenberg JJ; Lewis JS; Francesconi LC
    J Med Chem; 2014 Jun; 57(11):4849-60. PubMed ID: 24814511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Octadentate Zirconium(IV)-Loaded Macrocycles with Varied Stoichiometry Assembled From Hydroxamic Acid Monomers using Metal-Templated Synthesis.
    Tieu W; Lifa T; Katsifis A; Codd R
    Inorg Chem; 2017 Mar; 56(6):3719-3728. PubMed ID: 28245117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the Thermodynamic Stability of Zirconium Radiotracers.
    Holland JP
    Inorg Chem; 2020 Feb; 59(3):2070-2082. PubMed ID: 31940188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A High-Denticity Chelator Based on Desferrioxamine for Enhanced Coordination of Zirconium-89.
    Sarbisheh EK; Salih AK; Raheem SJ; Lewis JS; Price EW
    Inorg Chem; 2020 Aug; 59(16):11715-11727. PubMed ID: 32799484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tales of the Unexpected: The Case of Zirconium(IV) Complexes with Desferrioxamine.
    Savastano M; Bazzicalupi C; Ferraro G; Fratini E; Gratteri P; Bianchi A
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Zr(IV) and 89Zr(IV) complexation with hydroxamates: progress towards designing a better chelator than desferrioxamine B for immuno-PET imaging.
    Guérard F; Lee YS; Tripier R; Szajek LP; Deschamps JR; Brechbiel MW
    Chem Commun (Camb); 2013 Feb; 49(10):1002-4. PubMed ID: 23250287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals.
    Zhou X; Dong L; Shen L
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A macrocyclic chelator with unprecedented Th⁴⁺ affinity.
    Pham TA; Xu J; Raymond KN
    J Am Chem Soc; 2014 Jun; 136(25):9106-15. PubMed ID: 24870296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational Design, Development, and Stability Assessment of a Macrocyclic Four-Hydroxamate-Bearing Bifunctional Chelating Agent for
    Seibold U; Wängler B; Wängler C
    ChemMedChem; 2017 Sep; 12(18):1555-1571. PubMed ID: 28715615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal Coordination Properties of a Chromophoric Desferrioxamine (DFO) Derivative: Insight on the Coordination Stoichiometry and Thermodynamic Stability of Zr
    Savastano M; Boscaro F; Bianchi A
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Aqueous Coordination Chemistry of Highly Lewis Acidic Metals with Emerging Isotopes for Nuclear Medicine.
    Whetter JN; Śmiłowicz D; Boros E
    Acc Chem Res; 2024 Mar; 57(6):933-944. PubMed ID: 38501206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.