These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2780254)

  • 1. Ca2+-activated K+ channels contribute to the resting potential of vascular myocytes. Ca2+-sensitivity is increased by intracellular Mg2+-ions.
    Trieschmann U; Isenberg G
    Pflugers Arch; 1989; 414 Suppl 1():S183-4. PubMed ID: 2780254
    [No Abstract]   [Full Text] [Related]  

  • 2. Inward rectifier K+ currents in smooth muscle cells from rat coronary arteries: block by Mg2+, Ca2+, and Ba2+.
    Robertson BE; Bonev AD; Nelson MT
    Am J Physiol; 1996 Aug; 271(2 Pt 2):H696-705. PubMed ID: 8770113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid modifies Ca2+-dependent potassium channel activity in smooth muscle cells from the human aorta.
    Bregestovski PD; Bolotina VM; Serebryakov VN
    Proc R Soc Lond B Biol Sci; 1989 Aug; 237(1288):259-66. PubMed ID: 2571153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin II blocks ATP-sensitive K+ channels in porcine coronary artery smooth muscle cells.
    Miyoshi Y; Nakaya Y
    Biochem Biophys Res Commun; 1991 Dec; 181(2):700-6. PubMed ID: 1755851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular divalent cations block smooth muscle K+ channels.
    Gelband CH; Ishikawa T; Post JM; Keef KD; Hume JR
    Circ Res; 1993 Jul; 73(1):24-34. PubMed ID: 7685253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-sensitive potassium current in isolated canine coronary smooth muscle cells.
    Buljubasic N; Marijic J; Kampine JP; Bosnjak ZJ
    Can J Physiol Pharmacol; 1994 Mar; 72(3):189-98. PubMed ID: 7520826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BK channel activation by NS-1619 is partially mediated by intracellular Ca2+ release in smooth muscle cells of porcine coronary artery.
    Yamamura H; Ohi Y; Muraki K; Watanabe M; Imaizumi Y
    Br J Pharmacol; 2001 Feb; 132(4):828-34. PubMed ID: 11181423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ca2+]i inhibition of K+ channels in canine renal artery. Novel mechanism for agonist-induced membrane depolarization.
    Gelband CH; Hume JR
    Circ Res; 1995 Jul; 77(1):121-30. PubMed ID: 7788870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular free calcium accumulation in ferret vascular smooth muscle during crystalloid and blood cardioplegic infusions.
    Tofukuji M; Matsuda N; Dessy C; Morgan KG; Sellke FW
    J Thorac Cardiovasc Surg; 1999 Jul; 118(1):163-72. PubMed ID: 10384199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage dependence of the pharmacological Mg2+ block of the Ca2+ entry into vascular smooth muscle cells.
    Fleckenstein-Grün G; Matyas S; Dumont L
    Magnes Res; 1997 Jun; 10(2):101-6. PubMed ID: 9368230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+ and Mg-ATP activated potassium channels from rat pulmonary artery.
    Robertson BE; Corry PR; Nye PC; Kozlowski RZ
    Pflugers Arch; 1992 Jun; 421(2-3):94-6. PubMed ID: 1528724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acids directly increase the activity of Ca(2+)-activated K+ channels in rabbit coronary smooth muscle cells.
    Ahn DS; Kim YB; Lee YH; Kang BS; Kang DH
    Yonsei Med J; 1994 Mar; 35(1):10-24. PubMed ID: 8009892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise training increases K+-channel contribution to regulation of coronary arterial tone.
    Bowles DK; Laughlin MH; Sturek M
    J Appl Physiol (1985); 1998 Apr; 84(4):1225-33. PubMed ID: 9516188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current fluctuations and oscillations in smooth muscle cells from hog carotid artery. Role of the sarcoplasmic reticulum.
    Désilets M; Driska SP; Baumgarten CM
    Circ Res; 1989 Sep; 65(3):708-22. PubMed ID: 2766490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ATP, calcium and voltage sensitive potassium channel in porcine coronary artery smooth muscle cells.
    Silberberg SD; van Breemen C
    Biochem Biophys Res Commun; 1990 Oct; 172(2):517-22. PubMed ID: 2241951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels.
    Yuan XJ; Tod ML; Rubin LJ; Blaustein MP
    Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10489-94. PubMed ID: 8816828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of delayed rectifier K+ currents in rabbit coronary artery cells near resting membrane potential.
    Ishikawa T; Eckman DM; Keef KD
    Can J Physiol Pharmacol; 1997 Sep; 75(9):1116-22. PubMed ID: 9365823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolated guinea pig coronary smooth muscle cells. Acetylcholine induces hyperpolarization due to sarcoplasmic reticulum calcium release activating potassium channels.
    Ganitkevich V; Isenberg G
    Circ Res; 1990 Aug; 67(2):525-8. PubMed ID: 2376084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that BKCa channel activation contributes to K+ channel opener induced relaxation of the porcine coronary artery.
    Balwierczak JL; Krulan CM; Kim HS; DelGrande D; Weiss GB; Hu S
    Naunyn Schmiedebergs Arch Pharmacol; 1995 Aug; 352(2):213-21. PubMed ID: 7477446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Block of large conductance Ca(2+)-activated K+ channels in rabbit vascular myocytes by internal Mg2+ and Na+.
    Morales E; Cole WC; Remillard CV; Leblane N
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):701-16. PubMed ID: 8887777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.