BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 27802572)

  • 1. Crystal structure of the archaeosine synthase QueF-like-Insights into amidino transfer and tRNA recognition by the tunnel fold.
    Mei X; Alvarez J; Bon Ramos A; Samanta U; Iwata-Reuyl D; Swairjo MA
    Proteins; 2017 Jan; 85(1):103-116. PubMed ID: 27802572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of a sequestered imine intermediate during reduction of nitrile to amine by the nitrile reductase QueF from
    Jung J; Nidetzky B
    J Biol Chem; 2018 Mar; 293(10):3720-3733. PubMed ID: 29339556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QueF-Like, a Non-Homologous Archaeosine Synthase from the Crenarchaeota.
    Bon Ramos A; Bao L; Turner B; de Crécy-Lagard V; Iwata-Reuyl D
    Biomolecules; 2017 Apr; 7(2):. PubMed ID: 28383498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery and characterization of an amidinotransferase involved in the modification of archaeal tRNA.
    Phillips G; Chikwana VM; Maxwell A; El-Yacoubi B; Swairjo MA; Iwata-Reuyl D; de Crécy-Lagard V
    J Biol Chem; 2010 Apr; 285(17):12706-13. PubMed ID: 20129918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic Analysis and Probing with Substrate Analogues of the Reaction Pathway of the Nitrile Reductase QueF from Escherichia coli.
    Jung J; Czabany T; Wilding B; Klempier N; Nidetzky B
    J Biol Chem; 2016 Dec; 291(49):25411-25426. PubMed ID: 27754868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization and preliminary X-ray characterization of the nitrile reductase QueF: a queuosine-biosynthesis enzyme.
    Swairjo MA; Reddy RR; Lee B; Van Lanen SG; Brown S; de Crécy-Lagard V; Iwata-Reuyl D; Schimmel P
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Oct; 61(Pt 10):945-8. PubMed ID: 16511203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique active site formation in a novel galactose 1-phosphate uridylyltransferase from the hyperthermophilic archaeon Pyrobaculum aerophilum.
    Ohshida T; Hayashi J; Yoneda K; Ohshima T; Sakuraba H
    Proteins; 2020 May; 88(5):669-678. PubMed ID: 31693208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the substrate binding site of E. coli nitrile reductase QueF by modeling, substrate and enzyme engineering.
    Wilding B; Winkler M; Petschacher B; Kratzer R; Egger S; Steinkellner G; Lyskowski A; Nidetzky B; Gruber K; Klempier N
    Chemistry; 2013 May; 19(22):7007-12. PubMed ID: 23595998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic studies of Bacillus subtilis QueF, the nitrile oxidoreductase involved in queuosine biosynthesis.
    Lee BW; Van Lanen SG; Iwata-Reuyl D
    Biochemistry; 2007 Nov; 46(44):12844-54. PubMed ID: 17929836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique coenzyme binding mode of hyperthermophilic archaeal sn-glycerol-1-phosphate dehydrogenase from Pyrobaculum calidifontis.
    Hayashi J; Yamamoto K; Yoneda K; Ohshima T; Sakuraba H
    Proteins; 2016 Dec; 84(12):1786-1796. PubMed ID: 27616573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional characterization of the TYW3/Taw3 class of SAM-dependent methyltransferases.
    Currie MA; Brown G; Wong A; Ohira T; Sugiyama K; Suzuki T; Yakunin AF; Jia Z
    RNA; 2017 Mar; 23(3):346-354. PubMed ID: 27932585
    [No Abstract]   [Full Text] [Related]  

  • 12. Diversity of archaeosine synthesis in crenarchaeota.
    Phillips G; Swairjo MA; Gaston KW; Bailly M; Limbach PA; Iwata-Reuyl D; de Crécy-Lagard V
    ACS Chem Biol; 2012 Feb; 7(2):300-5. PubMed ID: 22032275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of RNA-binding properties of the archaeal Hfq-like protein from Methanococcus jannaschii.
    Nikulin A; Mikhailina A; Lekontseva N; Balobanov V; Nikonova E; Tishchenko S
    J Biomol Struct Dyn; 2017 Jun; 35(8):1615-1628. PubMed ID: 27187760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Archaeosine Modification of Archaeal tRNA: Role in Structural Stabilization.
    Turner B; Burkhart BW; Weidenbach K; Ross R; Limbach PA; Schmitz RA; de Crécy-Lagard V; Stedman KM; Santangelo TJ; Iwata-Reuyl D
    J Bacteriol; 2020 Mar; 202(8):. PubMed ID: 32041795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of archaeosine tRNA-guanine transglycosylase.
    Ishitani R; Nureki O; Fukai S; Kijimoto T; Nameki N; Watanabe M; Kondo H; Sekine M; Okada N; Nishimura S; Yokoyama S
    J Mol Biol; 2002 May; 318(3):665-77. PubMed ID: 12054814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection of the Queuosine Biosynthesis Enzyme QueF from Irreversible Oxidation by a Conserved Intramolecular Disulfide.
    Mohammad A; Bon Ramos A; Lee BW; Cohen SW; Kiani MK; Iwata-Reuyl D; Stec B; Swairjo MA
    Biomolecules; 2017 Mar; 7(1):. PubMed ID: 28300774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The trimeric Hef-associated nuclease HAN is a 3'→5' exonuclease and is probably involved in DNA repair.
    Feng L; Chang CC; Song D; Jiang C; Song Y; Wang CF; Deng W; Zou YJ; Chen HF; Xiao X; Wang FP; Liu XP
    Nucleic Acids Res; 2018 Sep; 46(17):9027-9043. PubMed ID: 30102394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a [NiFe] hydrogenase maturation protease HybD from Thermococcus kodakarensis KOD1.
    Kwon S; Nishitani Y; Watanabe S; Hirao Y; Imanaka T; Kanai T; Atomi H; Miki K
    Proteins; 2016 Sep; 84(9):1321-7. PubMed ID: 27192667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of archaeosine, a novel derivative of 7-deazaguanosine specific to archaeal tRNA, proceeds via a pathway involving base replacement on the tRNA polynucleotide chain.
    Watanabe M; Matsuo M; Tanaka S; Akimoto H; Asahi S; Nishimura S; Katze JR; Hashizume T; Crain PF; McCloskey JA; Okada N
    J Biol Chem; 1997 Aug; 272(32):20146-51. PubMed ID: 9242689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the additional cysteine 503 of vancomycin-resistant Enterococcus faecalis (V583) alkylhydroperoxide reductase subunit F (AhpF) and the mechanism of AhpF and subunit C assembling.
    Toh YK; Shin J; Balakrishna AM; Kamariah N; Grüber A; Eisenhaber F; Eisenhaber B; Grüber G
    Free Radic Biol Med; 2019 Jul; 138():10-22. PubMed ID: 31047989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.