These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
434 related articles for article (PubMed ID: 27802598)
1. Reduced Blood Cell Adhesion on Polypropylene Substrates through a Simple Surface Zwitterionization. Chen SH; Chang Y; Ishihara K Langmuir; 2017 Jan; 33(2):611-621. PubMed ID: 27802598 [TBL] [Abstract][Full Text] [Related]
2. Copolymer coatings consisting of 2-methacryloyloxyethyl phosphorylcholine and 3-methacryloxypropyl trimethoxysilane via ATRP to improve cellulose biocompatibility. Yuan B; Chen Q; Ding WQ; Liu PS; Wu SS; Lin SC; Shen J; Gai Y ACS Appl Mater Interfaces; 2012 Aug; 4(8):4031-9. PubMed ID: 22856677 [TBL] [Abstract][Full Text] [Related]
3. Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials. Nakabayashi N; Iwasaki Y Biomed Mater Eng; 2004; 14(4):345-54. PubMed ID: 15472384 [TBL] [Abstract][Full Text] [Related]
4. Cell adhesion on phase-separated surface of block copolymer composed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(dimethylsiloxane). Seo JH; Matsuno R; Takai M; Ishihara K Biomaterials; 2009 Oct; 30(29):5330-40. PubMed ID: 19592090 [TBL] [Abstract][Full Text] [Related]
5. Hemocompatibility on graft copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine) side chain and poly(n-butyl methacrylate) backbone. Ishihara K; Tsuji T; Kurosaki T; Nakabayashi N J Biomed Mater Res; 1994 Feb; 28(2):225-32. PubMed ID: 8207035 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of fibroblast cell adhesion on substrate by coating with 2-methacryloyloxyethyl phosphorylcholine polymers. Ishihara K; Ishikawa E; Iwasaki Y; Nakabayashi N J Biomater Sci Polym Ed; 1999; 10(10):1047-61. PubMed ID: 10591131 [TBL] [Abstract][Full Text] [Related]
7. Reduced protein adsorption on novel phospholipid polymers. Ishihara K; Iwasaki Y J Biomater Appl; 1998 Oct; 13(2):111-27. PubMed ID: 9777463 [TBL] [Abstract][Full Text] [Related]
8. Stability Enhancement by Hydrophobic Anchoring and a Cross-Linked Structure of a Phospholipid Copolymer Film for Medical Devices. Uchida K; Masuda T; Hara S; Matsuo Y; Liu Y; Aoki H; Asano Y; Miyata K; Fukuma T; Ono T; Isoyama T; Takai M ACS Appl Mater Interfaces; 2024 Jul; 16(30):39104-39116. PubMed ID: 39036941 [TBL] [Abstract][Full Text] [Related]
9. Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer. Liu Y; Inoue Y; Mahara A; Kakinoki S; Yamaoka T; Ishihara K J Biomater Sci Polym Ed; 2014; 25(14-15):1514-29. PubMed ID: 24894706 [TBL] [Abstract][Full Text] [Related]
10. Superior antibacterial surfaces using hydrophilic, poly(MPC) and poly(mOEGMA) free chains of amphiphilic block copolymer for sustainable use. Masuda T; Yoshizawa S; Noguchi A; Kozuka Y; Isu N; Takai M Heliyon; 2024 Feb; 10(4):e26347. PubMed ID: 38404882 [TBL] [Abstract][Full Text] [Related]
11. Selective adhesion of platelets on a polyion complex composed of phospholipid polymers containing sulfonate groups and quarternary ammonium groups. Ishihara K; Inoue H; Kurita K; Nakabayashi N J Biomed Mater Res; 1994 Nov; 28(11):1347-55. PubMed ID: 7829565 [TBL] [Abstract][Full Text] [Related]
12. Surface modification with well-defined biocompatible triblock copolymers Improvement of biointerfacial phenomena on a poly(dimethylsiloxane) surface. Iwasaki Y; Takamiya M; Iwata R; Yusa S; Akiyoshi K Colloids Surf B Biointerfaces; 2007 Jun; 57(2):226-36. PubMed ID: 17360164 [TBL] [Abstract][Full Text] [Related]
13. Formation of Hydrophobic Domains on the poly(MPC- Katayama R; Ikeda M; Shiraishi K; Matsumoto A; Kojima C Langmuir; 2019 Sep; 35(37):12229-12235. PubMed ID: 30813727 [TBL] [Abstract][Full Text] [Related]
14. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. Liu Y; Inoue Y; Sakata S; Kakinoki S; Yamaoka T; Ishihara K J Biomater Sci Polym Ed; 2014; 25(5):474-86. PubMed ID: 24417469 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Yusa S; Fukuda K; Yamamoto T; Ishihara K; Morishima Y Biomacromolecules; 2005; 6(2):663-70. PubMed ID: 15762627 [TBL] [Abstract][Full Text] [Related]
16. Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization. Chen SH; Chang Y; Lee KR; Wei TC; Higuchi A; Ho FM; Tsou CC; Ho HT; Lai JY Langmuir; 2012 Dec; 28(51):17733-42. PubMed ID: 23181727 [TBL] [Abstract][Full Text] [Related]
17. Zwitterionic fibrous polypropylene assembled with amphiphatic carboxybetaine copolymers for hemocompatible blood filtration. Venault A; Ye CC; Lin YC; Tsai CW; Jhong JF; Ruaan RC; Higuchi A; Chinnathambi A; Ho HT; Chang Y Acta Biomater; 2016 Aug; 40():130-141. PubMed ID: 26826530 [TBL] [Abstract][Full Text] [Related]
18. Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers. Seo JH; Matsuno R; Konno T; Takai M; Ishihara K Biomaterials; 2008 Apr; 29(10):1367-76. PubMed ID: 18155763 [TBL] [Abstract][Full Text] [Related]
19. Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Ishihara K; Oshida H; Endo Y; Ueda T; Watanabe A; Nakabayashi N J Biomed Mater Res; 1992 Dec; 26(12):1543-52. PubMed ID: 1484061 [TBL] [Abstract][Full Text] [Related]
20. Examination of 2-methacryloyloxyethyl phosphorylcholine polymer coated acrylic resin denture base material: surface characteristics and Candida albicans adhesion. Türkcan İ; Nalbant AD; Bat E; Akca G J Mater Sci Mater Med; 2018 Jul; 29(7):107. PubMed ID: 29971499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]