These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27802671)

  • 1. An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows.
    Oettinger D; Haller G
    Chaos; 2016 Oct; 26(10):103111. PubMed ID: 27802671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attracting and repelling Lagrangian coherent structures from a single computation.
    Farazmand M; Haller G
    Chaos; 2013 Jun; 23(2):023101. PubMed ID: 23822466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global variational approach to elliptic transport barriers in three dimensions.
    Oettinger D; Blazevski D; Haller G
    Chaos; 2016 Mar; 26(3):033114. PubMed ID: 27036192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing Lagrangian coherent structures from their variational theory.
    Farazmand M; Haller G
    Chaos; 2012 Mar; 22(1):013128. PubMed ID: 22463004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting invariant manifolds as stationary Lagrangian coherent structures in autonomous dynamical systems.
    Teramoto H; Haller G; Komatsuzaki T
    Chaos; 2013 Dec; 23(4):043107. PubMed ID: 24387546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-time barriers to front propagation in two-dimensional fluid flows.
    Mahoney JR; Mitchell KA
    Chaos; 2015 Aug; 25(8):087404. PubMed ID: 26328575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attracting Lagrangian coherent structures on Riemannian manifolds.
    Karrasch D
    Chaos; 2015 Aug; 25(8):087411. PubMed ID: 26328582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective Eulerian coherent structures.
    Serra M; Haller G
    Chaos; 2016 May; 26(5):053110. PubMed ID: 27249950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invariant-tori-like Lagrangian coherent structures in geophysical flows.
    Beron-Vera FJ; Olascoaga MJ; Brown MG; Koçak H; Rypina II
    Chaos; 2010 Mar; 20(1):017514. PubMed ID: 20370304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical topology of three-dimensional unsteady flows with spheroidal invariant surfaces.
    Contreras PS; Speetjens MFM; Clercx HJH
    Phys Rev E; 2020 May; 101(5-1):053109. PubMed ID: 32575344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lagrangian coherent structures and the smallest finite-time Lyapunov exponent.
    Haller G; Sapsis T
    Chaos; 2011 Jun; 21(2):023115. PubMed ID: 21721757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaotic Manifold Analysis of Four-Screw Extruders Based on Lagrangian Coherent Structures.
    Zhu XZ; Tong Y; Hu YX
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30441795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lagrangian coherent structures along atmospheric rivers.
    Garaboa-Paz D; Eiras-Barca J; Huhn F; Pérez-Muñuzuri V
    Chaos; 2015 Jun; 25(6):063105. PubMed ID: 26117099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated computation of finite-time Lyapunov exponent fields during direct numerical simulation of unsteady flows.
    Finn J; Apte SV
    Chaos; 2013 Mar; 23(1):013145. PubMed ID: 23556982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do Finite-Size Lyapunov Exponents detect coherent structures?
    Karrasch D; Haller G
    Chaos; 2013 Dec; 23(4):043126. PubMed ID: 24387565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface mixing and biological activity in the North-West African upwelling.
    El Aouni A; Daoudi K; Yahia H; Minaoui K; Benazzouz A
    Chaos; 2019 Jan; 29(1):011104. PubMed ID: 30709139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lagrangian approach to analysis and engineering of two generic transport problems in enhanced subsurface flows.
    Speetjens M; Varghese S; Trieling R
    J Contam Hydrol; 2019 Jul; 224():103482. PubMed ID: 31084920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-Time Lyapunov Exponents and Lagrangian Coherent Structures in Uncertain Unsteady Flows.
    Guo H; He W; Peterka T; Shen HW; Collis S; Helmus J
    IEEE Trans Vis Comput Graph; 2016 Jun; 22(6):1672-1682. PubMed ID: 26955037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaotic advection in a recirculating flow: Effect of a fluid-flexible-solid interaction.
    Prasad V; Kulkarni SS; Sharma A
    Chaos; 2022 Apr; 32(4):043122. PubMed ID: 35489862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backward Finite-Time Lyapunov Exponents in Inertial Flows.
    Gunther T; Theisel H
    IEEE Trans Vis Comput Graph; 2017 Jan; 23(1):970-979. PubMed ID: 27875210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.