These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 27803952)
1. Production of the Functional Trisaccharide 1-Kestose from Cane Sugar Molasses Using Aspergillus japonicus β-Fructofuranosidase. Hirabayashi K; Kondo N; Toyota H; Hayashi S Curr Microbiol; 2017 Jan; 74(1):145-148. PubMed ID: 27803952 [TBL] [Abstract][Full Text] [Related]
2. Production of Functional Inulin-Type Fructooligosaccharides by an Enzyme from Penicillium citrinum. Tashiro Y; Ueno H; Takaba M; Hayashi S Curr Microbiol; 2017 Sep; 74(9):1114-1117. PubMed ID: 28676886 [TBL] [Abstract][Full Text] [Related]
3. Efficient Conversion of Cane Molasses into Fructooligosaccharides by a Glucose Derepression Mutant of Zhang S; Jiang H; Xue S; Ge N; Sun Y; Chi Z; Liu G; Chi Z J Agric Food Chem; 2019 Dec; 67(49):13665-13672. PubMed ID: 31686508 [TBL] [Abstract][Full Text] [Related]
4. Production of fructooligosaccharides by beta-fructofuranosidases from Aspergillus oryzae KB. Kurakake M; Masumoto R; Maguma K; Kamata A; Saito E; Ukita N; Komaki T J Agric Food Chem; 2010 Jan; 58(1):488-92. PubMed ID: 20014851 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a beta-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. Alvaro-Benito M; de Abreu M; Fernández-Arrojo L; Plou FJ; Jiménez-Barbero J; Ballesteros A; Polaina J; Fernández-Lobato M J Biotechnol; 2007 Oct; 132(1):75-81. PubMed ID: 17904238 [TBL] [Abstract][Full Text] [Related]
7. Preparation of high-purity fructo-oligosaccharides by Aspergillus japonicus beta-fructofuranosidase and successive cultivation with yeast. Yang YL; Wang JH; Teng D; Zhang F J Agric Food Chem; 2008 Apr; 56(8):2805-9. PubMed ID: 18333616 [TBL] [Abstract][Full Text] [Related]
8. Properties of Aspergillus japonicus β-fructofuranosidase immobilized on porous silica. Hayashi S; Matsuzaki K; Inomata Y; Takasaki Y; Imada K World J Microbiol Biotechnol; 1993 Mar; 9(2):216-20. PubMed ID: 24419951 [TBL] [Abstract][Full Text] [Related]
9. Molecular and biochemical characterization of a beta-fructofuranosidase from Xanthophyllomyces dendrorhous. Linde D; Macias I; Fernández-Arrojo L; Plou FJ; Jiménez A; Fernández-Lobato M Appl Environ Microbiol; 2009 Feb; 75(4):1065-73. PubMed ID: 19088319 [TBL] [Abstract][Full Text] [Related]
10. Production of β-fructofuranosidase byAspergillus japonicus. Hayashi S; Matsuzaki K; Takasaki Y; Ueno H; Imada K World J Microbiol Biotechnol; 1992 Mar; 8(2):155-9. PubMed ID: 24425399 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic synthesis of novel oligosaccharides from N-acetylsucrosamine using β-fructofuranosidase from Aspergillus oryzae. Nishio T; Juami M; Wada T; Sugimoto Y; Senou H; Komori W; Sakuma C; Hirano T; Hakamata W; Tashiro M Carbohydr Res; 2013 Dec; 382():108-12. PubMed ID: 24246554 [TBL] [Abstract][Full Text] [Related]
12. Exploring the transferase activity of Ffase from Schwanniomyces occidentalis, a β-fructofuranosidase showing high fructosyl-acceptor promiscuity. Piedrabuena D; Míguez N; Poveda A; Plou FJ; Fernández-Lobato M Appl Microbiol Biotechnol; 2016 Oct; 100(20):8769-78. PubMed ID: 27229725 [TBL] [Abstract][Full Text] [Related]
13. Production of short-chain fructooligosaccharides (scFOS) using extracellular β-D-fructofuranosidase produced by Aspergillus thermomutatus. Tódero LM; Rechia CGV; Guimarães LHS J Food Biochem; 2019 Aug; 43(8):e12937. PubMed ID: 31368547 [TBL] [Abstract][Full Text] [Related]
14. Biochemical characterization of a beta-fructofuranosidase from Rhodotorula dairenensis with transfructosylating activity. Gutiérrez-Alonso P; Fernández-Arrojo L; Plou FJ; Fernández-Lobato M FEMS Yeast Res; 2009 Aug; 9(5):768-73. PubMed ID: 19486164 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of β-D-fructofuranosyl-(2→1)-2-acetamido-2-deoxy-α-D-glucopyranoside (N-acetylsucrosamine) using β-fructofuranosidase-containing Aspergillus oryzae mycelia as a whole-cell catalyst. Hirano T; Wada T; Iwai S; Sato H; Noda M; Juami M; Nakamura M; Kumaki Y; Hakamata W; Nishio T Carbohydr Res; 2012 May; 353():27-32. PubMed ID: 22525099 [TBL] [Abstract][Full Text] [Related]
16. Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Mussatto SI; Aguilar CN; Rodrigues LR; Teixeira JA Carbohydr Res; 2009 Apr; 344(6):795-800. PubMed ID: 19251252 [TBL] [Abstract][Full Text] [Related]
17. Yeast cultures expressing the Ffase from Schwanniomyces occidentalis, a simple system to produce the potential prebiotic sugar 6-kestose. Rodrigo-Frutos D; Piedrabuena D; Sanz-Aparicio J; Fernández-Lobato M Appl Microbiol Biotechnol; 2019 Jan; 103(1):279-289. PubMed ID: 30357454 [TBL] [Abstract][Full Text] [Related]
18. Tailor-made fructooligosaccharides by a combination of substrate and genetic engineering. Zuccaro A; Götze S; Kneip S; Dersch P; Seibel J Chembiochem; 2008 Jan; 9(1):143-9. PubMed ID: 18058889 [TBL] [Abstract][Full Text] [Related]
19. Purification and properties ofβ-fructofuranosidase from Aspergillus japonicus. Hayashi S; Matsuzaki K; Takasaki Y; Ueno H; Imada K World J Microbiol Biotechnol; 1992 May; 8(3):276-9. PubMed ID: 24425477 [TBL] [Abstract][Full Text] [Related]
20. Rapid evaluation of 1-kestose producing β-fructofuranosidases from Aspergillus species and enhancement of 1-kestose production using a PgsA surface-display system. Fujii T; Tochio T; Hirano K; Tamura K; Tonozuka T Biosci Biotechnol Biochem; 2018 Sep; 82(9):1599-1605. PubMed ID: 29873621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]