These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Semirational Directed Evolution of Loop Regions in Aspergillus japonicus β-Fructofuranosidase for Improved Fructooligosaccharide Production. Trollope KM; Görgens JF; Volschenk H Appl Environ Microbiol; 2015 Oct; 81(20):7319-29. PubMed ID: 26253664 [TBL] [Abstract][Full Text] [Related]
44. Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity. Ramírez-Escudero M; Gimeno-Pérez M; González B; Linde D; Merdzo Z; Fernández-Lobato M; Sanz-Aparicio J J Biol Chem; 2016 Mar; 291(13):6843-57. PubMed ID: 26823463 [TBL] [Abstract][Full Text] [Related]
45. Molecular and biochemical characterization of a novel intracellular invertase from Aspergillus niger with transfructosylating activity. Goosen C; Yuan XL; van Munster JM; Ram AF; van der Maarel MJ; Dijkhuizen L Eukaryot Cell; 2007 Apr; 6(4):674-81. PubMed ID: 17293485 [TBL] [Abstract][Full Text] [Related]
46. Amberlite IRA 900 versus calcium alginate in immobilization of a novel, engineered β-fructofuranosidase for short-chain fructooligosaccharide synthesis from sucrose. Bedzo OKK; Trollope K; Gottumukkala LD; Coetzee G; Görgens JF Biotechnol Prog; 2019 May; 35(3):e2797. PubMed ID: 30816638 [TBL] [Abstract][Full Text] [Related]
48. Continuous production of fructooligosaccharides by recycling of the thermal-stable β-fructofuranosidase produced by Aspergillus niger. Wang J; Zhang J; Wang L; Liu H; Li N; Zhou H; Ning Z; Zhang W; Wang L; Huang F; Zhong Y Biotechnol Lett; 2021 Jun; 43(6):1175-1182. PubMed ID: 33575897 [TBL] [Abstract][Full Text] [Related]
49. Fructo-oligosaccharides: Production, Purification and Potential Applications. Bali V; Panesar PS; Bera MB; Panesar R Crit Rev Food Sci Nutr; 2015; 55(11):1475-90. PubMed ID: 24915337 [TBL] [Abstract][Full Text] [Related]
50. Characterization of fructooligosaccharide-degrading enzymes in human commensal Bifidobacterium longum and Anaerostipes caccae. Tanno H; Fujii T; Ose R; Hirano K; Tochio T; Endo A Biochem Biophys Res Commun; 2019 Oct; 518(2):294-298. PubMed ID: 31420164 [TBL] [Abstract][Full Text] [Related]
51. Beet sugar syrup and molasses as low-cost feedstock for the enzymatic production of fructo-oligosaccharides. Ghazi I; Fernandez-Arrojo L; Gomez De Segura A; Alcalde M; Plou FJ; Ballesteros A J Agric Food Chem; 2006 Apr; 54(8):2964-8. PubMed ID: 16608216 [TBL] [Abstract][Full Text] [Related]
52. do Nascimento GC; Batista RD; Santos CCADA; da Silva EM; de Paula FC; Mendes DB; de Oliveira DP; de Almeida AF ScientificWorldJournal; 2019; 2019():6956202. PubMed ID: 30728756 [No Abstract] [Full Text] [Related]
53. Action of Arthrobacter ureafaciens inulinase II on several oligofructans and bacterial levans. Uchiyama T Biochim Biophys Acta; 1975 Jul; 397(1):153-63. PubMed ID: 1148257 [TBL] [Abstract][Full Text] [Related]
54. Recovery and properties of a fructooligosaccharides-producing beta-fructofuranosidase from Aspergillus japonicus CCRC 38011. Su YC; Sheu CS Proc Natl Sci Counc Repub China B; 1993 Apr; 17(2):62-9. PubMed ID: 7809276 [TBL] [Abstract][Full Text] [Related]
55. Proton and carbon NMR chemical-shift assignments for [beta-D-Fru f-(2-->1)]3-(2<==>1)-alpha-D-Glc p (nystose) and [beta-D-Fru f-(2-->1)]4-(2<==>1)-alpha-D-Glc p (1,1,1-kestopentaose) from two-dimensional NMR spectral measurements. Liu J; Waterhouse AL; Chatterton NJ Carbohydr Res; 1993 Jul; 245(1):11-9. PubMed ID: 8358742 [TBL] [Abstract][Full Text] [Related]
56. Analysis of neofructooligosaccharides production mediated by the extracellular β-fructofuranosidase from Xanthophyllomyces dendrorhous. Linde D; Rodríguez-Colinas B; Estévez M; Poveda A; Plou FJ; Fernández Lobato M Bioresour Technol; 2012 Apr; 109():123-30. PubMed ID: 22297043 [TBL] [Abstract][Full Text] [Related]
57. An integrated bio-process for production of functional biomolecules utilizing raw and by-products from dairy and sugarcane industries. Lata K; Sharma M; Patel SN; Sangwan RS; Singh SP Bioprocess Biosyst Eng; 2018 Aug; 41(8):1121-1131. PubMed ID: 29680868 [TBL] [Abstract][Full Text] [Related]
58. Immobilized Sclerotinia sclerotiorum invertase to produce invert sugar syrup from industrial beet molasses by-product. Mouelhi R; Abidi F; Galai S; Marzouki MN World J Microbiol Biotechnol; 2014 Mar; 30(3):1063-73. PubMed ID: 24142426 [TBL] [Abstract][Full Text] [Related]
59. Proton and carbon chemical-shift assignments for 6-kestose and neokestose from two-dimensional n.m.r. measurements. Liu JH; Waterhouse AL; Chatterton NJ Carbohydr Res; 1991 Sep; 217():43-9. PubMed ID: 1797405 [TBL] [Abstract][Full Text] [Related]
60. Synthesis of methyl 6-O-beta-inulotriosyl-alpha-D-glucopyranoside by intermolecular transglycosylation reaction of cycloinulo-oligosaccharide fructanotransferase. Kawamura M; Nakai H; Uchiyama T; Takai Y; Sawada M Carbohydr Res; 1997 Jan; 297(2):187-90. PubMed ID: 9060186 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]