These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 27803952)
61. Characteristics of an organic solvent-tolerant β-fructofuranosidase from Arthrobacter arilaitensis NJEM01 and efficient synthesis of prebiotic kestose. Chu J; Wu X; Wu B; Wang R; He B J Agric Food Chem; 2014 Jun; 62(24):5408-11. PubMed ID: 24854707 [TBL] [Abstract][Full Text] [Related]
62. Formation of trisaccharides (kestoses) by pyrolysis of sucrose. Manley-Harris M; Richards GN Carbohydr Res; 1991 Oct; 219():101-13. PubMed ID: 1804528 [TBL] [Abstract][Full Text] [Related]
63. Production of prebiotic 6-kestose using Zymomonas mobilis levansucrase in carob molasses and its effect on 5-HMF levels during storage. Taştan Ö; Sözgen G; Baysal T; Kaplan Türköz B Food Chem; 2019 Nov; 297():124897. PubMed ID: 31253291 [TBL] [Abstract][Full Text] [Related]
64. One-pot production of fructooligosaccharides by a Saccharomyces cerevisiae strain expressing an engineered invertase. Marín-Navarro J; Talens-Perales D; Polaina J Appl Microbiol Biotechnol; 2015 Mar; 99(6):2549-55. PubMed ID: 25547837 [TBL] [Abstract][Full Text] [Related]
65. Production, Purification, and Gene Cloning of a β-Fructofuranosidase with a High Inulin-hydrolyzing Activity Produced by a Novel Yeast Aureobasidium sp. P6 Isolated from a Mangrove Ecosystem. Jiang H; Ma Y; Chi Z; Liu GL; Chi ZM Mar Biotechnol (NY); 2016 Aug; 18(4):500-10. PubMed ID: 27351759 [TBL] [Abstract][Full Text] [Related]
66. Successive Fermentation of Aguamiel and Molasses by de la Rosa O; Flores-Gallegos AC; Muñíz-Márquez D; Contreras-Esquivel JC; Teixeira JA; Nobre C; Aguilar CN Foods; 2022 Jun; 11(12):. PubMed ID: 35741984 [TBL] [Abstract][Full Text] [Related]
67. A novel approach of integrated bioprocessing of cane molasses for production of prebiotic and functional bioproducts. Sharma M; Patel SN; Lata K; Singh U; Krishania M; Sangwan RS; Singh SP Bioresour Technol; 2016 Nov; 219():311-318. PubMed ID: 27498012 [TBL] [Abstract][Full Text] [Related]
68. Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis. Chuankhayan P; Hsieh CY; Huang YC; Hsieh YY; Guan HH; Hsieh YC; Tien YC; Chen CD; Chiang CM; Chen CJ J Biol Chem; 2010 Jul; 285(30):23251-64. PubMed ID: 20466731 [TBL] [Abstract][Full Text] [Related]
70. Filamentous fungi in good shape: microparticles for tailor-made fungal morphology and enhanced enzyme production. Driouch H; Roth A; Dersch P; Wittmann C Bioeng Bugs; 2011; 2(2):100-4. PubMed ID: 21636997 [TBL] [Abstract][Full Text] [Related]
71. A novel two-step enzymatic synthesis of blastose, a β-d-fructofuranosyl-(2↔6)-d-glucopyranose sucrose analogue. Miranda-Molina A; Castillo E; Lopez Munguia A Food Chem; 2017 Jul; 227():202-210. PubMed ID: 28274423 [TBL] [Abstract][Full Text] [Related]
72. Biochemical characterization of an intracellular 6G-fructofuranosidase from Xanthophyllomyces dendrorhous and its use in production of neo-fructooligosaccharides (neo-FOSs). Chen J; Chen X; Xu X; Ning Y; Jin Z; Tian Y Bioresour Technol; 2011 Jan; 102(2):1715-21. PubMed ID: 20805025 [TBL] [Abstract][Full Text] [Related]
73. The hydrolytic and transferase action of alternanase on oligosaccharides. Côté GL; Ahlgren JA Carbohydr Res; 2001 Jun; 332(4):373-9. PubMed ID: 11438094 [TBL] [Abstract][Full Text] [Related]
74. New insights into the molecular mechanism behind mannitol and erythritol fructosylation by β-fructofuranosidase from Schwanniomyces occidentalis. Rodrigo-Frutos D; Jiménez-Ortega E; Piedrabuena D; Ramírez-Escudero M; Míguez N; Plou FJ; Sanz-Aparicio J; Fernández-Lobato M Sci Rep; 2021 Mar; 11(1):7158. PubMed ID: 33785821 [TBL] [Abstract][Full Text] [Related]
75. Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar. Valli V; Gómez-Caravaca AM; Di Nunzio M; Danesi F; Caboni MF; Bordoni A J Agric Food Chem; 2012 Dec; 60(51):12508-15. PubMed ID: 23190112 [TBL] [Abstract][Full Text] [Related]
76. Biocatalytic synthesis of lactosucrose using a recombinant thermostable β-fructofuranosidase from Chen C; Deng J; Lv X; Li J; Du G; Li H; Liu L Bioengineered; 2020 Dec; 11(1):416-427. PubMed ID: 32175807 [TBL] [Abstract][Full Text] [Related]
77. Engineering the β-Fructofuranosidase Fru6 with Promoted Transfructosylating Capacity for Fructooligosaccharide Production. Chu J; Tian Y; Li Q; Liu G; Yu Q; Jiang T; He B J Agric Food Chem; 2022 Aug; 70(31):9694-9702. PubMed ID: 35900332 [TBL] [Abstract][Full Text] [Related]
78. Immobilization of beta-fructofuranosidases from Aspergillus on methacrylamide-based polymeric beads for production of fructooligosaccharides. Chiang CJ; Lee WC; Sheu DC; Duan KJ Biotechnol Prog; 1997; 13(5):577-82. PubMed ID: 9336977 [TBL] [Abstract][Full Text] [Related]
79. Crystal structure of 6-SST/6-SFT from Pachysandra terminalis, a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6-kestose. Lammens W; Le Roy K; Yuan S; Vergauwen R; Rabijns A; Van Laere A; Strelkov SV; Van den Ende W Plant J; 2012 Apr; 70(2):205-19. PubMed ID: 22098191 [TBL] [Abstract][Full Text] [Related]
80. Enzymatic synthesis of two novel non-reducing oligosaccharides using transfructosylation activity with beta-fructofuranosidase from arthrobacter globiformis. Win TT; Isono N; Kusnadi Y; Watanabe K; Obae K; Ito H; Matsui H Biotechnol Lett; 2004 Mar; 26(6):499-503. PubMed ID: 15127791 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]