These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 27804103)
1. Rhizobacteria with nematicide aptitude: enzymes and compounds associated. Castaneda-Alvarez C; Aballay E World J Microbiol Biotechnol; 2016 Dec; 32(12):203. PubMed ID: 27804103 [TBL] [Abstract][Full Text] [Related]
2. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. Tian B; Yang J; Zhang KQ FEMS Microbiol Ecol; 2007 Aug; 61(2):197-213. PubMed ID: 17651135 [TBL] [Abstract][Full Text] [Related]
3. Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lian LH; Tian BY; Xiong R; Zhu MZ; Xu J; Zhang KQ Lett Appl Microbiol; 2007 Sep; 45(3):262-9. PubMed ID: 17718837 [TBL] [Abstract][Full Text] [Related]
4. Exoenzymes and metabolites related to the nematicidal effect of rhizobacteria on Xiphinema index Thorne & Allen. Castaneda-Alvarez C; Prodan S; Rosales IM; Aballay E J Appl Microbiol; 2016 Feb; 120(2):413-24. PubMed ID: 26541369 [TBL] [Abstract][Full Text] [Related]
5. Nematicidal enzymes from microorganisms and their applications. Yang J; Liang L; Li J; Zhang KQ Appl Microbiol Biotechnol; 2013 Aug; 97(16):7081-95. PubMed ID: 23832084 [TBL] [Abstract][Full Text] [Related]
6. Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. Aballay E; Prodan S; Zamorano A; Castaneda-Alvarez C World J Microbiol Biotechnol; 2017 Jul; 33(7):131. PubMed ID: 28585175 [TBL] [Abstract][Full Text] [Related]
7. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes. Meyer SL Pest Manag Sci; 2003; 59(6-7):665-70. PubMed ID: 12846316 [TBL] [Abstract][Full Text] [Related]
8. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Li J; Zou C; Xu J; Ji X; Niu X; Yang J; Huang X; Zhang KQ Annu Rev Phytopathol; 2015; 53():67-95. PubMed ID: 25938277 [TBL] [Abstract][Full Text] [Related]
9. Nematode parasites of animals are more prone to develop xenobiotic resistance than nematode parasites of plants. Silvestre A; Cabaret J Parasite; 2004 Jun; 11(2):119-29. PubMed ID: 15224572 [TBL] [Abstract][Full Text] [Related]
10. Extracellular enzymes and the pathogenesis of nematophagous fungi. Yang J; Tian B; Liang L; Zhang KQ Appl Microbiol Biotechnol; 2007 May; 75(1):21-31. PubMed ID: 17318531 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of Paecilomyces lilacinus (strain 251) for the control of root-knot nematodes. Kiewnick S; Sikora RA Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):123-8. PubMed ID: 15149100 [TBL] [Abstract][Full Text] [Related]
12. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Li GH; Zhang KQ Nat Prod Rep; 2023 Mar; 40(3):646-675. PubMed ID: 36597965 [TBL] [Abstract][Full Text] [Related]
13. On-Farm Evaluations of Nonfumigant Nematicides on Nematode Communities of Peach. Khanal C; Harshman D; Giles C Phytopathology; 2022 Oct; 112(10):2218-2223. PubMed ID: 35585720 [TBL] [Abstract][Full Text] [Related]
14. [Antagonistic interactions between saprotrophic fungi and geohelminths. 1. Saprotrophic fungi in the biological control of phytopathogenic geohelminths]. Mazurkiewicz-Zapałowicz K; Kołodziejczyk L Wiad Parazytol; 2009; 55(1):1-8. PubMed ID: 19579778 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Clonostachys rosea for Control of Plant-Parasitic Nematodes in Soil and in Roots of Carrot and Wheat. Iqbal M; Dubey M; McEwan K; Menzel U; Franko MA; Viketoft M; Jensen DF; Karlsson M Phytopathology; 2018 Jan; 108(1):52-59. PubMed ID: 28945522 [TBL] [Abstract][Full Text] [Related]
16. Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes. Salehi Jouzani G; Seifinejad A; Saeedizadeh A; Nazarian A; Yousefloo M; Soheilivand S; Mousivand M; Jahangiri R; Yazdani M; Amiri RM; Akbari S Can J Microbiol; 2008 Oct; 54(10):812-22. PubMed ID: 18923549 [TBL] [Abstract][Full Text] [Related]
17. Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Liang LM; Zou CG; Xu J; Zhang KQ Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180317. PubMed ID: 30967028 [TBL] [Abstract][Full Text] [Related]
18. Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. Goettel MS; Koike M; Kim JJ; Aiuchi D; Shinya R; Brodeur J J Invertebr Pathol; 2008 Jul; 98(3):256-61. PubMed ID: 18423483 [TBL] [Abstract][Full Text] [Related]
19. Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: A review. Fan Z; Wang L; Qin Y; Li P Carbohydr Polym; 2023 Apr; 306():120592. PubMed ID: 36746583 [TBL] [Abstract][Full Text] [Related]
20. Rhizosphere Interactions and the Exploitation of Microbial Agents for the Biological Control of Plant-Parasitic Nematodes. Kerry BR Annu Rev Phytopathol; 2000 Sep; 38():423-441. PubMed ID: 11701849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]