These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 27804787)

  • 1. Pharmaceutical patent applications in freeze-drying.
    Ekenlebie E; Einfalt T; Karytinos AI; Ingham A
    Pharm Pat Anal; 2016 Sep; 5(6):407-416. PubMed ID: 27804787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.
    Korang-Yeboah M; Srinivasan C; Siddiqui A; Awotwe-Otoo D; Cruz CN; Muhammad A
    AAPS PharmSciTech; 2018 Jan; 19(1):448-459. PubMed ID: 28785859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors Influencing the Retention of Organic Solvents in Products Freeze-Dried From Co-Solvent Systems.
    Kunz C; Gieseler H
    J Pharm Sci; 2018 Aug; 107(8):2005-2012. PubMed ID: 29649470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic aspects and future trends in the freeze-drying of pharmaceuticals.
    Rey LR
    Dev Biol Stand; 1992; 74():3-8. PubMed ID: 1592180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses.
    De Meyer L; Van Bockstal PJ; Corver J; Vervaet C; Remon JP; De Beer T
    Int J Pharm; 2015 Dec; 496(1):75-85. PubMed ID: 25981618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a temperature ramp approach (TRA) to design an optimum and robust freeze-drying process for pharmaceutical formulations.
    Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C
    Int J Pharm; 2020 Mar; 578():119116. PubMed ID: 32027958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic Principles of Lyophilization, Part 2.
    Akers MJ
    Int J Pharm Compd; 2016; 20(1):20-7. PubMed ID: 27125053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A procedure to optimize scale-up for the primary drying phase of lyophilization.
    Kramer T; Kremer DM; Pikal MJ; Petre WJ; Shalaev EY; Gatlin LA
    J Pharm Sci; 2009 Jan; 98(1):307-18. PubMed ID: 18506820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical aspects of lyophilization using non-aqueous co-solvent systems.
    Teagarden DL; Baker DS
    Eur J Pharm Sci; 2002 Mar; 15(2):115-33. PubMed ID: 11849908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncontact Infrared-Mediated Heat Transfer During Continuous Freeze-Drying of Unit Doses.
    Van Bockstal PJ; De Meyer L; Corver J; Vervaet C; De Beer T
    J Pharm Sci; 2017 Jan; 106(1):71-82. PubMed ID: 27321237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze-drying of proteins: some emerging concerns.
    Roy I; Gupta MN
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):165-77. PubMed ID: 15032737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in freeze-drying: variables, cycle optimization, and innovative techniques.
    Mehanna MM; Abla KK
    Pharm Dev Technol; 2022 Oct; 27(8):904-923. PubMed ID: 36174214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-drying of lactic acid bacteria.
    Fonseca F; Cenard S; Passot S
    Methods Mol Biol; 2015; 1257():477-88. PubMed ID: 25428024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat Transfer Analysis of an Optimized, Flexible Holder System for Freeze-Drying in Dual Chamber Cartridges Using Different State-of-the-Art PAT Tools.
    Korpus C; Pikal M; Friess W
    J Pharm Sci; 2016 Nov; 105(11):3304-3313. PubMed ID: 27555046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy transfer during freeze-drying in dual-chamber cartridges.
    Korpus C; Haase T; Sönnichsen C; Friess W
    J Pharm Sci; 2015 May; 104(5):1750-8. PubMed ID: 25712903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design.
    Beirowski J; Inghelbrecht S; Arien A; Gieseler H
    J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Principles of Freeze-Drying and Application of Analytical Technologies.
    Ward KR; Matejtschuk P
    Methods Mol Biol; 2021; 2180():99-127. PubMed ID: 32797409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein spheres prepared by drop jet freeze drying.
    Eggerstedt SN; Dietzel M; Sommerfeld M; Süverkrüp R; Lamprecht A
    Int J Pharm; 2012 Nov; 438(1-2):160-6. PubMed ID: 22960322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Importance of Understanding the Freezing Step and Its Impact on Freeze-Drying Process Performance.
    Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C
    J Pharm Sci; 2019 Apr; 108(4):1378-1395. PubMed ID: 30529167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.