These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 27804950)
1. Powerful decomposition of complex traits in a diploid model. Hallin J; Märtens K; Young AI; Zackrisson M; Salinas F; Parts L; Warringer J; Liti G Nat Commun; 2016 Nov; 7():13311. PubMed ID: 27804950 [TBL] [Abstract][Full Text] [Related]
2. Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton. Li C; Zhao T; Yu H; Li C; Deng X; Dong Y; Zhang F; Zhang Y; Mei L; Chen J; Zhu S BMC Genomics; 2018 Dec; 19(1):910. PubMed ID: 30541432 [TBL] [Abstract][Full Text] [Related]
3. Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. Luo X; Fu Y; Zhang P; Wu S; Tian F; Liu J; Zhu Z; Yang J; Sun C J Integr Plant Biol; 2009 Apr; 51(4):393-408. PubMed ID: 21452591 [TBL] [Abstract][Full Text] [Related]
4. Identification of quantitative trait loci for kernel-related traits and the heterosis for these traits in maize (Zea mays L.). Liu Y; Yi Q; Hou X; Hu Y; Li Y; Yu G; Liu H; Zhang J; Huang Y Mol Genet Genomics; 2020 Jan; 295(1):121-133. PubMed ID: 31511973 [TBL] [Abstract][Full Text] [Related]
5. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). Yi Q; Liu Y; Hou X; Zhang X; Li H; Zhang J; Liu H; Hu Y; Yu G; Li Y; Wang Y; Huang Y BMC Plant Biol; 2019 Sep; 19(1):392. PubMed ID: 31500559 [TBL] [Abstract][Full Text] [Related]
6. Genomewide mapping reveals a combination of different genetic effects causing the genetic basis of heterosis in two elite rice hybrids. Li L; He X; Zhang H; Wang Z; Sun C; Mou T; Li X; Zhang Y; Hu Z J Genet; 2015 Jun; 94(2):261-70. PubMed ID: 26174673 [TBL] [Abstract][Full Text] [Related]
7. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Luo LJ; Li ZK; Mei HW; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH Genetics; 2001 Aug; 158(4):1755-71. PubMed ID: 11514460 [TBL] [Abstract][Full Text] [Related]
8. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Li L; Lu K; Chen Z; Mu T; Hu Z; Li X Genetics; 2008 Nov; 180(3):1725-42. PubMed ID: 18791236 [TBL] [Abstract][Full Text] [Related]
9. Genetic Causes of Phenotypic Adaptation to the Second Fermentation of Sparkling Wines in Martí-Raga M; Peltier E; Mas A; Beltran G; Marullo P G3 (Bethesda); 2017 Feb; 7(2):399-412. PubMed ID: 27903630 [TBL] [Abstract][Full Text] [Related]
10. The interplay of additivity, dominance, and epistasis on fitness in a diploid yeast cross. Matsui T; Mullis MN; Roy KR; Hale JJ; Schell R; Levy SF; Ehrenreich IM Nat Commun; 2022 Mar; 13(1):1463. PubMed ID: 35304450 [TBL] [Abstract][Full Text] [Related]
11. Epistatic QTLs for yield heterosis in tomato. Torgeman S; Zamir D Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2205787119. PubMed ID: 36972451 [TBL] [Abstract][Full Text] [Related]
12. The dominance model for heterosis explains culm length genetics in a hybrid sorghum variety. Hashimoto S; Wake T; Nakamura H; Minamiyama M; Araki-Nakamura S; Ohmae-Shinohara K; Koketsu E; Okamura S; Miura K; Kawaguchi H; Kasuga S; Sazuka T Sci Rep; 2021 Feb; 11(1):4532. PubMed ID: 33633216 [TBL] [Abstract][Full Text] [Related]
13. Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize. Jiang L; Ge M; Zhao H; Zhang T PLoS One; 2015; 10(4):e0124779. PubMed ID: 25919458 [TBL] [Abstract][Full Text] [Related]
14. Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids. Shang L; Wang Y; Cai S; Wang X; Li Y; Abduweli A; Hua J G3 (Bethesda); 2015 Dec; 6(3):499-507. PubMed ID: 26715091 [TBL] [Abstract][Full Text] [Related]
15. Genetic basis of grain yield heterosis in an "immortalized F₂" maize population. Guo T; Yang N; Tong H; Pan Q; Yang X; Tang J; Wang J; Li J; Yan J Theor Appl Genet; 2014 Oct; 127(10):2149-58. PubMed ID: 25104328 [TBL] [Abstract][Full Text] [Related]
16. Cumulative and different genetic effects contributed to yield heterosis using maternal and paternal backcross populations in Upland cotton. Ma L; Wang Y; Ijaz B; Hua J Sci Rep; 2019 Mar; 9(1):3984. PubMed ID: 30850683 [TBL] [Abstract][Full Text] [Related]
17. Integrative multi-omics analysis reveals genetic and heterotic contributions to male fertility and yield in potato. Li D; Geng Z; Xia S; Feng H; Jiang X; Du H; Wang P; Lian Q; Zhu Y; Jia Y; Zhou Y; Wu Y; Huang C; Zhu G; Shang Y; Li H; Städler T; Yang W; Huang S; Zhang C Nat Commun; 2024 Oct; 15(1):8652. PubMed ID: 39368981 [TBL] [Abstract][Full Text] [Related]
18. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Basunanda P; Radoev M; Ecke W; Friedt W; Becker HC; Snowdon RJ Theor Appl Genet; 2010 Jan; 120(2):271-81. PubMed ID: 19707740 [TBL] [Abstract][Full Text] [Related]
19. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Frascaroli E; Canè MA; Landi P; Pea G; Gianfranceschi L; Villa M; Morgante M; Pè ME Genetics; 2007 May; 176(1):625-44. PubMed ID: 17339211 [TBL] [Abstract][Full Text] [Related]
20. Hybridity has a greater effect than paternal genome dosage on heterosis in sugar beet (Beta vulgaris). Hallahan BF; Fernandez-Tendero E; Fort A; Ryder P; Dupouy G; Deletre M; Curley E; Brychkova G; Schulz B; Spillane C BMC Plant Biol; 2018 Jun; 18(1):120. PubMed ID: 29907096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]