These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 27804950)
21. QTL mapping of combining ability and heterosis of agronomic traits in rice backcross recombinant inbred lines and hybrid crosses. Qu Z; Li L; Luo J; Wang P; Yu S; Mou T; Zheng X; Hu Z PLoS One; 2012; 7(1):e28463. PubMed ID: 22291881 [TBL] [Abstract][Full Text] [Related]
22. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Li ZK; Luo LJ; Mei HW; Wang DL; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH Genetics; 2001 Aug; 158(4):1737-53. PubMed ID: 11514459 [TBL] [Abstract][Full Text] [Related]
23. Dominance and epistasis are the main contributors to heterosis for plant height in rice. Shen G; Zhan W; Chen H; Xing Y Plant Sci; 2014 Feb; 215-216():11-8. PubMed ID: 24388510 [TBL] [Abstract][Full Text] [Related]
24. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Melchinger AE; Piepho HP; Utz HF; Muminovic J; Wegenast T; Törjék O; Altmann T; Kusterer B Genetics; 2007 Nov; 177(3):1827-37. PubMed ID: 18039884 [TBL] [Abstract][Full Text] [Related]
25. The role of epistasis in the manifestation of heterosis: a systems-oriented approach. Melchinger AE; Utz HF; Piepho HP; Zeng ZB; Schön CC Genetics; 2007 Nov; 177(3):1815-25. PubMed ID: 18039883 [TBL] [Abstract][Full Text] [Related]
26. Genome Sequence and QTL Analyses Using Backcross Recombinant Inbred Lines (BILs) and BILF Yu Y; Zhu M; Cui Y; Liu Y; Li Z; Jiang N; Xu Z; Xu Q; Sui G Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991733 [No Abstract] [Full Text] [Related]
27. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Garcia AA; Wang S; Melchinger AE; Zeng ZB Genetics; 2008 Nov; 180(3):1707-24. PubMed ID: 18791260 [TBL] [Abstract][Full Text] [Related]
28. Formation of diploid and triploid hybrid groupers (hybridization of Epinephelus coioides ♀ × Epinephelus lanceolatus ♂) and their 5S gene analysis. Huang W; Qin Q; Yang H; Li S; Hu C; Wang Y; Zhang Y; Liu S; Lin H BMC Genet; 2016 Oct; 17(1):136. PubMed ID: 27717311 [TBL] [Abstract][Full Text] [Related]
29. Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci. Thiemann A; Fu J; Seifert F; Grant-Downton RT; Schrag TA; Pospisil H; Frisch M; Melchinger AE; Scholten S BMC Plant Biol; 2014 Apr; 14():88. PubMed ID: 24693880 [TBL] [Abstract][Full Text] [Related]
30. Genetic complexity and quantitative trait loci mapping of yeast morphological traits. Nogami S; Ohya Y; Yvert G PLoS Genet; 2007 Feb; 3(2):e31. PubMed ID: 17319748 [TBL] [Abstract][Full Text] [Related]
31. QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions. Han Z; Ku L; Zhang Z; Zhang J; Guo S; Liu H; Zhao R; Ren Z; Zhang L; Su H; Dong L; Chen Y PLoS One; 2014; 9(3):e92535. PubMed ID: 24651614 [TBL] [Abstract][Full Text] [Related]
32. Finding the sources of missing heritability in a yeast cross. Bloom JS; Ehrenreich IM; Loo WT; Lite TL; Kruglyak L Nature; 2013 Feb; 494(7436):234-7. PubMed ID: 23376951 [TBL] [Abstract][Full Text] [Related]
33. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Li D; Huang Z; Song S; Xin Y; Mao D; Lv Q; Zhou M; Tian D; Tang M; Wu Q; Liu X; Chen T; Song X; Fu X; Zhao B; Liang C; Li A; Liu G; Li S; Hu S; Cao X; Yu J; Yuan L; Chen C; Zhu L Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6026-E6035. PubMed ID: 27663737 [TBL] [Abstract][Full Text] [Related]
34. Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid zhengdan 958 by design III. Li H; Yang Q; Fan N; Zhang M; Zhai H; Ni Z; Zhang Y BMC Genet; 2017 Apr; 18(1):36. PubMed ID: 28415964 [TBL] [Abstract][Full Text] [Related]
35. Predicting quantitative traits from genome and phenome with near perfect accuracy. Märtens K; Hallin J; Warringer J; Liti G; Parts L Nat Commun; 2016 May; 7():11512. PubMed ID: 27160605 [TBL] [Abstract][Full Text] [Related]
36. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Li X; Li X; Fridman E; Tesso TT; Yu J Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11823-8. PubMed ID: 26351684 [TBL] [Abstract][Full Text] [Related]
37. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations. Jiang G; Zeng J; He Y Gene; 2014 Feb; 536(2):287-95. PubMed ID: 24361205 [TBL] [Abstract][Full Text] [Related]
38. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Tang J; Yan J; Ma X; Teng W; Wu W; Dai J; Dhillon BS; Melchinger AE; Li J Theor Appl Genet; 2010 Jan; 120(2):333-40. PubMed ID: 19936698 [TBL] [Abstract][Full Text] [Related]
40. Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design. Wen J; Zhao X; Wu G; Xiang D; Liu Q; Bu SH; Yi C; Song Q; Dunwell JM; Tu J; Zhang T; Zhang YM Sci Rep; 2015 Dec; 5():18376. PubMed ID: 26679476 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]