These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 27805015)

  • 1. Distinct sets of locomotor modules control the speed and modes of human locomotion.
    Yokoyama H; Ogawa T; Kawashima N; Shinya M; Nakazawa K
    Sci Rep; 2016 Nov; 6():36275. PubMed ID: 27805015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speed dependency in α-motoneuron activity and locomotor modules in human locomotion: indirect evidence for phylogenetically conserved spinal circuits.
    Yokoyama H; Ogawa T; Shinya M; Kawashima N; Nakazawa K
    Proc Biol Sci; 2017 Mar; 284(1851):. PubMed ID: 28356457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. You are better off running than walking revisited: Does an acute vestibular imbalance affect muscle synergies?
    Fabre-Adinolfi D; Parietti-Winkler C; Pierret J; Lassalle-Kinic B; Frère J
    Hum Mov Sci; 2018 Dec; 62():150-160. PubMed ID: 30384183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor patterns in human walking and running.
    Cappellini G; Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Jun; 95(6):3426-37. PubMed ID: 16554517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in three dimensional lumbo-pelvic kinematics and trunk muscle activity with speed and mode of locomotion.
    Saunders SW; Schache A; Rath D; Hodges PW
    Clin Biomech (Bristol, Avon); 2005 Oct; 20(8):784-93. PubMed ID: 15975698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor modules in robot-aided walking.
    Gizzi L; Nielsen JF; Felici F; Moreno JC; Pons JL; Farina D
    J Neuroeng Rehabil; 2012 Oct; 9():76. PubMed ID: 23043818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modularity underlying the performance of unusual locomotor tasks inspired by developmental milestones.
    Hinnekens E; Berret B; Do MC; Teulier C
    J Neurophysiol; 2020 Feb; 123(2):496-510. PubMed ID: 31825715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramuscular EMG from the hip flexor muscles during human locomotion.
    Andersson EA; Nilsson J; Thorstensson A
    Acta Physiol Scand; 1997 Nov; 161(3):361-70. PubMed ID: 9401589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions.
    Ivanenko YP; Cappellini G; Poppele RE; Lacquaniti F
    Eur J Neurosci; 2008 Jun; 27(12):3351-68. PubMed ID: 18598271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor module activation sequence and topography in the spinal cord during air-stepping in human: Insights into the traveling wave in spinal locomotor circuits.
    Yokoyama H; Hagio K; Ogawa T; Nakazawa K
    Physiol Rep; 2017 Nov; 5(22):. PubMed ID: 29180480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential activation of lumbar and sacral motor pools during walking at different speeds and slopes.
    Dewolf AH; Ivanenko YP; Zelik KE; Lacquaniti F; Willems PA
    J Neurophysiol; 2019 Aug; 122(2):872-887. PubMed ID: 31291150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Migration of motor pool activity in the spinal cord reflects body mechanics in human locomotion.
    Cappellini G; Ivanenko YP; Dominici N; Poppele RE; Lacquaniti F
    J Neurophysiol; 2010 Dec; 104(6):3064-73. PubMed ID: 20881204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial neural network model for the generation of muscle activation patterns for human locomotion.
    Prentice SD; Patla AE; Stacey DA
    J Electromyogr Kinesiol; 2001 Feb; 11(1):19-30. PubMed ID: 11166605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromuscular adjustments of gait associated with unstable conditions.
    Martino G; Ivanenko YP; d'Avella A; Serrao M; Ranavolo A; Draicchio F; Cappellini G; Casali C; Lacquaniti F
    J Neurophysiol; 2015 Nov; 114(5):2867-82. PubMed ID: 26378199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait.
    Farris DJ; Sawicki GS
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):977-82. PubMed ID: 22219360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Could different directions of infant stepping be controlled by the same locomotor central pattern generator?
    Lamb T; Yang JF
    J Neurophysiol; 2000 May; 83(5):2814-24. PubMed ID: 10805679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles.
    Kulmala JP; Korhonen MT; Ruggiero L; Kuitunen S; Suominen H; Heinonen A; Mikkola A; Avela J
    Med Sci Sports Exerc; 2016 Nov; 48(11):2181-2189. PubMed ID: 27327033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast changes in direction during human locomotion are executed by impulsive activation of motor modules.
    Oliveira AS; Silva PB; Lund ME; Kersting UG; Farina D
    Neuroscience; 2013 Jan; 228():283-93. PubMed ID: 23085217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity and functions of the human gluteal muscles in walking, running, sprinting, and climbing.
    Bartlett JL; Sumner B; Ellis RG; Kram R
    Am J Phys Anthropol; 2014 Jan; 153(1):124-31. PubMed ID: 24218079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR; Sasaki K
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.