These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27805015)

  • 21. Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait.
    Farris DJ; Sawicki GS
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):977-82. PubMed ID: 22219360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Postural and respiratory activation of the trunk muscles changes with mode and speed of locomotion.
    Saunders SW; Rath D; Hodges PW
    Gait Posture; 2004 Dec; 20(3):280-90. PubMed ID: 15531175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules.
    Ranganathan R; Krishnan C; Dhaher YY; Rymer WZ
    J Biomech; 2016 Mar; 49(5):718-725. PubMed ID: 26916510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The musculoskeletal system of humans is not tuned to maximize the economy of locomotion.
    Carrier DR; Anders C; Schilling N
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18631-6. PubMed ID: 22065766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Freely chosen stride frequencies during walking and running are not correlated with freely chosen pedalling frequency and are insensitive to strength training.
    Sardroodian M; Madeleine P; Voigt M; Hansen EA
    Gait Posture; 2015 Jun; 42(1):60-4. PubMed ID: 25943407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of locomotor-like EMG activity in paraplegic persons by orthotic gait training.
    Nakazawa K; Kakihana W; Kawashima N; Akai M; Yano H
    Exp Brain Res; 2004 Jul; 157(1):117-23. PubMed ID: 14968281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steady and transient coordination structures of walking and running.
    Lamoth CJ; Daffertshofer A; Huys R; Beek PJ
    Hum Mov Sci; 2009 Jun; 28(3):371-86. PubMed ID: 19027972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple artificial neural network models can generate basic muscle activity patterns for human locomotion at different speeds.
    Prentice SD; Patla AE; Stacey DA
    Exp Brain Res; 1998 Dec; 123(4):474-80. PubMed ID: 9870606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Speed related changes in muscle activity from normal to very slow walking speeds.
    den Otter AR; Geurts AC; Mulder T; Duysens J
    Gait Posture; 2004 Jun; 19(3):270-8. PubMed ID: 15125916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Method for Locomotion Mode Identification Using Muscle Synergies.
    Afzal T; Iqbal K; White G; Wright AB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):608-617. PubMed ID: 27362983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration within and between muscles during terrestrial locomotion: effects of incline and speed.
    Higham TE; Biewener AA
    J Exp Biol; 2008 Jul; 211(Pt 14):2303-16. PubMed ID: 18587125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new model of the spinal locomotor networks of a salamander and its properties.
    Liu Q; Yang H; Zhang J; Wang J
    Biol Cybern; 2018 Aug; 112(4):369-385. PubMed ID: 29790009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Walk-, run- and gallop-like gait patterns in human sideways locomotion.
    Yamashita D; Shinya M; Fujii K; Oda S; Kouzaki M
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1480-4. PubMed ID: 24055531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Features of hand-foot crawling behavior in human adults.
    Maclellan MJ; Ivanenko YP; Cappellini G; Sylos Labini F; Lacquaniti F
    J Neurophysiol; 2012 Jan; 107(1):114-25. PubMed ID: 21975454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo behavior of the human soleus muscle with increasing walking and running speeds.
    Lai A; Lichtwark GA; Schache AG; Lin YC; Brown NA; Pandy MG
    J Appl Physiol (1985); 2015 May; 118(10):1266-75. PubMed ID: 25814636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A
    Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.