These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27805135)

  • 21. Configurational entropy and collective modes in normal and supercooled liquids.
    Zürcher U; Keyes T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2065-70. PubMed ID: 11969999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation between glass-forming ability and fragility of pharmaceutical compounds.
    Kawakami K; Harada T; Yoshihashi Y; Yonemochi E; Terada K; Moriyama H
    J Phys Chem B; 2015 Apr; 119(14):4873-80. PubMed ID: 25781503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A thermodynamic approach to the fragility of glass-forming polymers.
    Cangialosi D; Alegría A; Colmenero J
    J Chem Phys; 2006 Jan; 124(2):024906. PubMed ID: 16422647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pressure dependence of structural relaxation time in terms of the Adam-Gibbs model.
    Casalini R; Capaccioli S; Lucchesi M; Rolla PA; Corezzi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031207. PubMed ID: 11308642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relation between thermodynamics and kinetics of glass-forming liquids.
    Tanaka H
    Phys Rev Lett; 2003 Feb; 90(5):055701. PubMed ID: 12633377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The JG β-relaxation in water and impact on the dynamics of aqueous mixtures and hydrated biomolecules.
    Capaccioli S; Ngai KL; Ancherbak S; Bertoldo M; Ciampalini G; Thayyil MS; Wang LM
    J Chem Phys; 2019 Jul; 151(3):034504. PubMed ID: 31325935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel approach to numerical measurements of the configurational entropy in supercooled liquids.
    Berthier L; Coslovich D
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11668-72. PubMed ID: 25071188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity.
    Matsuoka H
    J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Entropy, Free Volume, and Cooperative Relaxation.
    Matsuoka S
    J Res Natl Inst Stand Technol; 1997; 102(2):213-228. PubMed ID: 27805139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observation of an apparent first-order glass transition in ultrafragile Pt-Cu-P bulk metallic glasses.
    Na JH; Corona SL; Hoff A; Johnson WL
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2779-2787. PubMed ID: 31992640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Power law relationship between diffusion coefficients in multi-component glass forming liquids.
    Parmar ADS; Sengupta S; Sastry S
    Eur Phys J E Soft Matter; 2018 Aug; 41(8):90. PubMed ID: 30078172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical stability of amorphous pharmaceuticals: Importance of configurational thermodynamic quantities and molecular mobility.
    Zhou D; Zhang GG; Law D; Grant DJ; Schmitt EA
    J Pharm Sci; 2002 Aug; 91(8):1863-72. PubMed ID: 12115813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlations between vibrational entropy and dynamics in liquids.
    Wyart M
    Phys Rev Lett; 2010 Mar; 104(9):095901. PubMed ID: 20366995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the Thermodynamic Ideal Glass Transition Temperature in Glass-Forming Liquids.
    Gao Q; Jian Z
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32384810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glass phenomenology from the connection to spin glasses.
    Tarzia M; Moore MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031502. PubMed ID: 17500701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of glasses from liquids and biopolymers.
    Angell CA
    Science; 1995 Mar; 267(5206):1924-35. PubMed ID: 17770101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dependence of the fragility of a glass former on the softness of interparticle interactions.
    Sengupta S; Vasconcelos F; Affouard F; Sastry S
    J Chem Phys; 2011 Nov; 135(19):194503. PubMed ID: 22112088
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The new insight into dynamic crossover in glass forming liquids from the apparent enthalpy analysis.
    Martinez-Garcia JC; Martinez-Garcia J; Rzoska SJ; Hulliger J
    J Chem Phys; 2012 Aug; 137(6):064501. PubMed ID: 22897287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Landscapes and fragilities.
    Ruocco G; Sciortino F; Zamponi F; De Michele C; Scopigno T
    J Chem Phys; 2004 Jun; 120(22):10666-80. PubMed ID: 15268093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stringlike Cooperative Motion Explains the Influence of Pressure on Relaxation in a Model Glass-Forming Polymer Melt.
    Xu WS; Douglas JF; Freed KF
    ACS Macro Lett; 2016 Dec; 5(12):1375-1380. PubMed ID: 35651209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.