These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27805365)

  • 21. Optimization of nafion ionomer content using synthesized Pt/carbon nanofibers catalyst in polymer electrolyte membrane fuel cell.
    Jung JH; Cha MS; Kim JB
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5412-7. PubMed ID: 22966581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualization Analysis of Pt and Co Species in Degraded Pt
    Takao S; Sekizawa O; Higashi K; Samjeské G; Kaneko T; Sakata T; Yamamoto T; Uruga T; Iwasawa Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2299-2312. PubMed ID: 31841306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Ink Formulation on Construction of Catalyst Layers for High-Performance Polymer Electrolyte Membrane Fuel Cells.
    Gong Q; Li C; Liu Y; Ilavsky J; Guo F; Cheng X; Xie J
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37004-37013. PubMed ID: 34323080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iron-Nicarbazin derived platinum group metal-free electrocatalyst in scalable-size air-breathing cathodes for microbial fuel cells.
    Erable B; Oliot M; Lacroix R; Bergel A; Serov A; Kodali M; Santoro C; Atanassov P
    Electrochim Acta; 2018 Jul; 277():127-135. PubMed ID: 29970929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visualization and understanding of the degradation behaviors of a PEFC Pt/C cathode electrocatalyst using a multi-analysis system combining time-resolved quick XAFS, three-dimensional XAFS-CT, and same-view nano-XAFS/STEM-EDS techniques.
    Higashi K; Takao S; Samjeské G; Matsui H; Tada M; Uruga T; Iwasawa Y
    Phys Chem Chem Phys; 2020 Sep; 22(34):18919-18931. PubMed ID: 32542292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of a Mesoporous SnO
    Inaba M; Murase R; Takeshita T; Yano K; Kosaka S; Takahashi N; Isomura N; Oh-Ishi K; Yoshimune W; Tsuchiya K; Nobukawa T; Kodama K
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10295-10306. PubMed ID: 38379515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of service life of polymer electrolyte fuel cells through application of nanodispersed ionomer.
    Ahn CY; Ahn J; Kang SY; Kim OH; Lee DW; Lee JH; Shim JG; Lee CH; Cho YH; Sung YE
    Sci Adv; 2020 Jan; 6(5):eaaw0870. PubMed ID: 32064327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Double-chamber microbial fuel cell with a non-platinum-group metal Fe-N-C cathode catalyst.
    Santoro C; Serov A; Narvaez Villarrubia CW; Stariha S; Babanova S; Schuler AJ; Artyushkova K; Atanassov P
    ChemSusChem; 2015 Mar; 8(5):828-34. PubMed ID: 25606716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Full Parametric Study of the Influence of Ionomer Content, Catalyst Loading and Catalyst Type on Oxygen and Ion Transport in PEM Fuel Cell Catalyst Layers.
    Alink R; Singh R; Schneider P; Christmann K; Schall J; Keding R; Zamel N
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32230750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poly(ionic liquid) Ionomers Help Prevent Active Site Aggregation, in Single-Site Oxygen Reduction Catalysts.
    Favero S; Li A; Wang M; Uddin F; Kuzuoglu B; Georgeson A; Stephens IEL; Titirici MM
    ACS Catal; 2024 May; 14(10):7937-7948. PubMed ID: 38779182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.
    Santoro C; Kodali M; Herrera S; Serov A; Ieropoulos I; Atanassov P
    J Power Sources; 2018 Feb; 378():169-175. PubMed ID: 29527091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional nanostructure analysis of non-stained Nafion in fuel cell electrode by combined ADF-STEM tomography.
    Ube T
    Microscopy (Oxf); 2024 Jan; ():. PubMed ID: 38226523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Observation of Degradation of Pt and Carbon Support in Polymer Electrolyte Fuel Cell Using Combined Nano-X-ray Absorption Fine Structure and Transmission Electron Microscopy Techniques.
    Takao S; Sekizawa O; Samjeské G; Kaneko T; Higashi K; Yoshida Y; Zhao X; Sakata T; Yamamoto T; Gunji T; Uruga T; Iwasawa Y
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):27734-27744. PubMed ID: 30044074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sputtered cathodes for polymer electrolyte fuel cells: insights into potentials, challenges and limitations.
    Schwanitz B; Rabis A; Horisberger M; Scherer GG; Schmidt TJ
    Chimia (Aarau); 2012; 66(3):110-9. PubMed ID: 22546254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlling the Distribution of Perfluorinated Sulfonic Acid Ionomer with Elastin-like Polypeptide.
    Pramounmat N; Loney CN; Kim C; Wiles L; Ayers KE; Kusoglu A; Renner JN
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43649-43658. PubMed ID: 31644259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulated ionomer distribution in the catalyst layer of polymer electrolyte membrane fuel cells for high temperature operation.
    Choo MJ; Oh KH; Kim HT; Park JK
    ChemSusChem; 2014 Aug; 7(8):2335-41. PubMed ID: 24777945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High Performance and Cost-Effective Direct Methanol Fuel Cells: Fe-N-C Methanol-Tolerant Oxygen Reduction Reaction Catalysts.
    Sebastián D; Serov A; Artyushkova K; Gordon J; Atanassov P; Aricò AS; Baglio V
    ChemSusChem; 2016 Aug; 9(15):1986-95. PubMed ID: 27376964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the Catalyst Layer Structure Formed by Inkjet Coating Printer on PEFC Performance.
    Tamaki Y; Sugiura K
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33804033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical deposition of three-dimensional platinum nanoflowers for high-performance polymer electrolyte fuel cells.
    Dhanasekaran P; Lokesh K; Ojha PK; Sahu AK; Bhat SD; Kalpana D
    J Colloid Interface Sci; 2020 Jul; 572():198-206. PubMed ID: 32244080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential-Dependent Ionomer Rearrangement on the Pt Surface in Polymer Electrolyte Membrane Fuel Cells.
    Lee DW; Hyun J; Oh E; Seok K; Bae H; Park J; Kim HT
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4637-4647. PubMed ID: 38251952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.