BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 2780545)

  • 1. Three cytoplasmic loops of rhodopsin interact with transducin.
    König B; Arendt A; McDowell JH; Kahlert M; Hargrave PA; Hofmann KP
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6878-82. PubMed ID: 2780545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of rhodopsin with the G-protein, transducin.
    Hargrave PA; Hamm HE; Hofmann KP
    Bioessays; 1993 Jan; 15(1):43-50. PubMed ID: 8466475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin alpha and gamma subunits.
    Ernst OP; Meyer CK; Marin EP; Henklein P; Fu WY; Sakmar TP; Hofmann KP
    J Biol Chem; 2000 Jan; 275(3):1937-43. PubMed ID: 10636895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guanine nucleotide binding characteristics of transducin: essential role of rhodopsin for rapid exchange of guanine nucleotides.
    Fawzi AB; Northup JK
    Biochemistry; 1990 Apr; 29(15):3804-12. PubMed ID: 2187531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodopsin mutants that bind but fail to activate transducin.
    Franke RR; König B; Sakmar TP; Khorana HG; Hofmann KP
    Science; 1990 Oct; 250(4977):123-5. PubMed ID: 2218504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin.
    Pulvermüller A; Schroder K; Fischer T; Hofmann KP
    J Biol Chem; 2000 Dec; 275(48):37679-85. PubMed ID: 10969086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amino terminus of the fourth cytoplasmic loop of rhodopsin modulates rhodopsin-transducin interaction.
    Marin EP; Krishna AG; Zvyaga TA; Isele J; Siebert F; Sakmar TP
    J Biol Chem; 2000 Jan; 275(3):1930-6. PubMed ID: 10636894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit.
    Hamm HE; Deretic D; Arendt A; Hargrave PA; Koenig B; Hofmann KP
    Science; 1988 Aug; 241(4867):832-5. PubMed ID: 3136547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular basis of GTP-binding protein interaction with receptors.
    Hamm HE; Rarick H; Mazzoni M; Malinski J; Suh KH
    Biochem Soc Symp; 1990; 56():35-44. PubMed ID: 2256961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function in rhodopsin: effects of disulfide cross-links in the cytoplasmic face of rhodopsin on transducin activation and phosphorylation by rhodopsin kinase.
    Cai K; Klein-Seetharaman J; Hwa J; Hubbell WL; Khorana HG
    Biochemistry; 1999 Sep; 38(39):12893-8. PubMed ID: 10504260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transducin activation by molecular species of rhodopsin other than metarhodopsin II.
    Okada D; Nakai T; Ikai A
    Photochem Photobiol; 1989 Feb; 49(2):197-203. PubMed ID: 2540499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Displacement of rhodopsin by GDP from three-loop interaction with transducin depends critically on the diphosphate beta-position.
    Kahlert M; König B; Hofmann KP
    J Biol Chem; 1990 Nov; 265(31):18928-32. PubMed ID: 2229054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping sites of interaction between rhodopsin and transducin using rhodopsin antipeptide antibodies.
    Weiss ER; Kelleher DJ; Johnson GL
    J Biol Chem; 1988 May; 263(13):6150-4. PubMed ID: 3283122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoactivation of rhodopsin and interaction with transducin in detergent micelles. Effect of 'doping' with steroid molecules.
    König B; Welte W; Hofmann KP
    FEBS Lett; 1989 Oct; 257(1):163-6. PubMed ID: 2806558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin.
    Brabazon DM; Abdulaev NG; Marino JP; Ridge KD
    Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C-terminal peptides of rhodopsin. Determination of the optimum sequence for recognition of retinal transducin.
    Takemoto DJ; Morrison D; Davis LC; Takemoto LJ
    Biochem J; 1986 Apr; 235(1):309-12. PubMed ID: 3461782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin mutants discriminate sites important for the activation of rhodopsin kinase and Gt.
    Shi W; Osawa S; Dickerson CD; Weiss ER
    J Biol Chem; 1995 Feb; 270(5):2112-9. PubMed ID: 7836439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin.
    Jäger S; Palczewski K; Hofmann KP
    Biochemistry; 1996 Mar; 35(9):2901-8. PubMed ID: 8608127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal transfer from rhodopsin to the G-protein: evidence for a two-site sequential fit mechanism.
    Kisselev OG; Meyer CK; Heck M; Ernst OP; Hofmann KP
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):4898-903. PubMed ID: 10220390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure.
    Cai K; Klein-Seetharaman J; Farrens D; Zhang C; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7925-30. PubMed ID: 10387034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.