BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 2780545)

  • 21. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II.
    Schleicher A; Kühn H; Hofmann KP
    Biochemistry; 1989 Feb; 28(4):1770-5. PubMed ID: 2719933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transducin-alpha C-terminal peptide binding site consists of C-D and E-F loops of rhodopsin.
    Acharya S; Saad Y; Karnik SS
    J Biol Chem; 1997 Mar; 272(10):6519-24. PubMed ID: 9045677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F.
    Sheikh SP; Zvyaga TA; Lichtarge O; Sakmar TP; Bourne HR
    Nature; 1996 Sep; 383(6598):347-50. PubMed ID: 8848049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circular dichroism of metaiodopsin II and its binding to transducin: a comparative study between meta II intermediates of iodopsin and rhodopsin.
    Okada T; Matsuda T; Kandori H; Fukada Y; Yoshizawa T; Shichida Y
    Biochemistry; 1994 Apr; 33(16):4940-6. PubMed ID: 8161555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural studies of metarhodopsin II, the activated form of the G-protein coupled receptor, rhodopsin.
    Choi G; Landin J; Galan JF; Birge RR; Albert AD; Yeagle PL
    Biochemistry; 2002 Jun; 41(23):7318-24. PubMed ID: 12044163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrophobic amino acids at the cytoplasmic ends of helices 3 and 6 of rhodopsin conjointly modulate transducin activation.
    Bosch-Presegué L; Iarriccio L; Aguilà M; Toledo D; Ramon E; Cordomí A; Garriga P
    Arch Biochem Biophys; 2011 Feb; 506(2):142-9. PubMed ID: 21114958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rhodopsin-interacting surface of the transducin gamma subunit.
    Kisselev OG; Downs MA
    Biochemistry; 2006 Aug; 45(31):9386-92. PubMed ID: 16878973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct observation of the complex formation of GDP-bound transducin with the rhodopsin intermediate having a visible absorption maximum in rod outer segment membranes.
    Morizumi T; Imai H; Shichida Y
    Biochemistry; 2005 Jul; 44(29):9936-43. PubMed ID: 16026166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin.
    Franke RR; Sakmar TP; Graham RM; Khorana HG
    J Biol Chem; 1992 Jul; 267(21):14767-74. PubMed ID: 1634520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transducin interactions with rhodopsin. Evidence for positive cooperative behavior.
    Wessling-Resnick M; Johnson GL
    J Biol Chem; 1987 Sep; 262(26):12444-7. PubMed ID: 3114258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multisite contacts involved in coupling of the beta-adrenergic receptor with the stimulatory guanine-nucleotide-binding regulatory protein. Structural and functional studies by beta-receptor-site-specific synthetic peptides.
    Münch G; Dees C; Hekman M; Palm D
    Eur J Biochem; 1991 Jun; 198(2):357-64. PubMed ID: 1645656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The interaction network of rhodopsin involving the heterotrimeric G-protein transducin and the monomeric GTPase Rac1 is determined by distinct binding processes.
    Köster M; Dell'Orco D; Koch KW
    FEBS J; 2014 Dec; 281(23):5175-85. PubMed ID: 25243418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Schiff-base deprotonation is mandatory for light-dependent rhodopsin phosphorylation.
    Seckler B; Rando RR
    Biochem J; 1989 Dec; 264(2):489-93. PubMed ID: 2604728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct observation of the pH-dependent equilibrium between metarhodopsins I and II and the pH-independent interaction of metarhodopsin II with transducin C-terminal peptide.
    Sato K; Morizumi T; Yamashita T; Shichida Y
    Biochemistry; 2010 Feb; 49(4):736-41. PubMed ID: 20030396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing rhodopsin-transducin interaction using Drosophila Rh1-bovine rhodopsin chimeras.
    Natochin M; Barren B; Ahmad ST; O'Tousa JE; Artemyev NO
    Vision Res; 2006 Dec; 46(27):4575-81. PubMed ID: 16979689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin.
    Acharya S; Karnik SS
    J Biol Chem; 1996 Oct; 271(41):25406-11. PubMed ID: 8810308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing rhodopsin-transducin interactions by surface modification and mass spectrometry.
    Wang X; Kim SH; Ablonczy Z; Crouch RK; Knapp DR
    Biochemistry; 2004 Sep; 43(35):11153-62. PubMed ID: 15366925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and function in rhodopsin. Single cysteine substitution mutants in the cytoplasmic interhelical E-F loop region show position-specific effects in transducin activation.
    Yang K; Farrens DL; Hubbell WL; Khorana HG
    Biochemistry; 1996 Sep; 35(38):12464-9. PubMed ID: 8823181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-step mechanism of interaction of rhodopsin intermediates with the C-terminal region of the transducin alpha-subunit.
    Morizumi T; Imai H; Shichida Y
    J Biochem; 2003 Aug; 134(2):259-67. PubMed ID: 12966076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cooperative binding of the retinal rod G-protein, transducin, to light-activated rhodopsin.
    Willardson BM; Pou B; Yoshida T; Bitensky MW
    J Biol Chem; 1993 Mar; 268(9):6371-82. PubMed ID: 8454608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.