BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 2780545)

  • 41. Regulation of retinal transducin by C-terminal peptides of rhodopsin.
    Takemoto DJ; Takemoto LJ; Hansen J; Morrison D
    Biochem J; 1985 Dec; 232(3):669-72. PubMed ID: 3867351
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arrestin-rhodopsin interaction. Multi-site binding delineated by peptide inhibition.
    Krupnick JG; Gurevich VV; Schepers T; Hamm HE; Benovic JL
    J Biol Chem; 1994 Feb; 269(5):3226-32. PubMed ID: 8106358
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface plasmon resonance spectroscopy studies of membrane proteins: transducin binding and activation by rhodopsin monitored in thin membrane films.
    Salamon Z; Wang Y; Soulages JL; Brown MF; Tollin G
    Biophys J; 1996 Jul; 71(1):283-94. PubMed ID: 8804611
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The binding of G proteins to immobilized delipidated rhodopsin.
    Dizhoor AM; Nekrasova ER; Philippov PP
    Biochem Biophys Res Commun; 1989 Jul; 162(1):544-9. PubMed ID: 2502113
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Mol Vis; 1996 Dec; 2():12. PubMed ID: 9238089
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments.
    Wilden U; Hall SW; Kühn H
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1174-8. PubMed ID: 3006038
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of transducin with light-activated rhodopsin protects It from proteolytic digestion by trypsin.
    Mazzoni MR; Hamm HE
    J Biol Chem; 1996 Nov; 271(47):30034-40. PubMed ID: 8939950
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rhodopsin's carboxyl-terminal threonines are required for wild-type arrestin-mediated quench of transducin activation in vitro.
    Brannock MT; Weng K; Robinson PR
    Biochemistry; 1999 Mar; 38(12):3770-7. PubMed ID: 10090766
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reaction rate and collisional efficiency of the rhodopsin-transducin system in intact retinal rods.
    Kahlert M; Hofmann KP
    Biophys J; 1991 Feb; 59(2):375-86. PubMed ID: 1901231
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Presence of two rhodopsin intermediates responsible for transducin activation.
    Tachibanaki S; Imai H; Mizukami T; Okada T; Imamoto Y; Matsuda T; Fukada Y; Terakita A; Shichida Y
    Biochemistry; 1997 Nov; 36(46):14173-80. PubMed ID: 9369490
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure and function in rhodopsin: peptide sequences in the cytoplasmic loops of rhodopsin are intimately involved in interaction with rhodopsin kinase.
    Thurmond RL; Creuzenet C; Reeves PJ; Khorana HG
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1715-20. PubMed ID: 9050844
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular interactions between the photoreceptor G protein and rhodopsin.
    Hamm HE
    Cell Mol Neurobiol; 1991 Dec; 11(6):563-78. PubMed ID: 1782650
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa; Fesenko EE
    Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent.
    Cai K; Itoh Y; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4877-82. PubMed ID: 11320237
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions.
    Parkes JH; Liebman PA
    Biochemistry; 1984 Oct; 23(21):5054-61. PubMed ID: 6498176
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [A study of the interaction of immobilized delipidized rhodopsin with G-proteins].
    Dizhur AM; Nekrasova ER; Filippov PP
    Biokhimiia; 1989 Sep; 54(9):1508-13. PubMed ID: 2511928
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rhodopsin activation exposes a key hydrophobic binding site for the transducin alpha-subunit C terminus.
    Janz JM; Farrens DL
    J Biol Chem; 2004 Jul; 279(28):29767-73. PubMed ID: 15070895
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation and functional characterization of a stable complex between photoactivated rhodopsin and the G protein, transducin.
    Jastrzebska B; Golczak M; Fotiadis D; Engel A; Palczewski K
    FASEB J; 2009 Feb; 23(2):371-81. PubMed ID: 18827025
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of the intradiscal domain in rhodopsin assembly and function.
    Doi T; Molday RS; Khorana HG
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):4991-5. PubMed ID: 2367520
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure of the third cytoplasmic loop of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Biochemistry; 1995 Nov; 34(45):14621-5. PubMed ID: 7578070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.