These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 2780550)
1. A CACGTG motif of the Antirrhinum majus chalcone synthase promoter is recognized by an evolutionarily conserved nuclear protein. Staiger D; Kaulen H; Schell J Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6930-4. PubMed ID: 2780550 [TBL] [Abstract][Full Text] [Related]
2. Purification of tobacco nuclear proteins binding to a CACGTG motif of the chalcone synthase promoter by DNA affinity chromatography. Staiger D; Becker F; Schell J; Koncz C; Palme K Eur J Biochem; 1991 Aug; 199(3):519-27. PubMed ID: 1714388 [TBL] [Abstract][Full Text] [Related]
3. Promoter analysis of the chalcone synthase (chsA) gene of Petunia hybrida: a 67 bp promoter region directs flower-specific expression. van der Meer IM; Spelt CE; Mol JN; Stuitje AR Plant Mol Biol; 1990 Jul; 15(1):95-109. PubMed ID: 2103446 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Feinbaum RL; Ausubel FM Mol Cell Biol; 1988 May; 8(5):1985-92. PubMed ID: 3386631 [TBL] [Abstract][Full Text] [Related]
5. Transposon-induced alterations in the promoter region affect transcription of the chalcone synthase gene of Antirrhinum majus. Sommer H; Bonas U; Saedler H Mol Gen Genet; 1988 Jan; 211(1):49-55. PubMed ID: 2830468 [TBL] [Abstract][Full Text] [Related]
6. Directed evolution of plant basic helix-loop-helix transcription factors for the improvement of transactivational properties. Pattanaik S; Xie CH; Kong Q; Shen KA; Yuan L Biochim Biophys Acta; 2006 Jun; 1759(6):308-18. PubMed ID: 16837081 [TBL] [Abstract][Full Text] [Related]
8. Functional borders, genetic fine structure, and distance requirements of cis elements mediating light responsiveness of the parsley chalcone synthase promoter. Block A; Dangl JL; Hahlbrock K; Schulze-Lefert P Proc Natl Acad Sci U S A; 1990 Jul; 87(14):5387-91. PubMed ID: 2371277 [TBL] [Abstract][Full Text] [Related]
9. Dissection of the functional architecture of a plant defense gene promoter using a homologous in vitro transcription initiation system. Arias JA; Dixon RA; Lamb CJ Plant Cell; 1993 Apr; 5(4):485-96. PubMed ID: 8485404 [TBL] [Abstract][Full Text] [Related]
10. Upstream stimulatory factor regulates E box-dependent PAI-1 transcription in human epidermal keratinocytes. Allen RR; Qi L; Higgins PJ J Cell Physiol; 2005 Apr; 203(1):156-65. PubMed ID: 15372465 [TBL] [Abstract][Full Text] [Related]
11. S2F, a leaf-specific trans-acting factor, binds to a novel cis-acting element and differentially activates the RPL21 gene. Lagrange T; Gauvin S; Yeo HJ; Mache R Plant Cell; 1997 Aug; 9(8):1469-79. PubMed ID: 9286115 [TBL] [Abstract][Full Text] [Related]
12. A semi-dominant allele, niv-525, acts in trans to inhibit expression of its wild-type homologue in Antirrhinum majus. Coen ES; Carpenter R EMBO J; 1988 Apr; 7(4):877-83. PubMed ID: 3402437 [TBL] [Abstract][Full Text] [Related]
13. A Nuclear Factor Recognizing a Positive Regulatory Upstream Element of the Antirrhinum majus Chalcone Synthase Promoter. Staiger D; Kaulen H; Schell J Plant Physiol; 1990 Aug; 93(4):1347-53. PubMed ID: 16667623 [TBL] [Abstract][Full Text] [Related]
14. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. Birkenbihl RP; Jach G; Saedler H; Huijser P J Mol Biol; 2005 Sep; 352(3):585-96. PubMed ID: 16095614 [TBL] [Abstract][Full Text] [Related]
15. Regulatory elements required for light-mediated expression of the Petroselinum crispum chalcone synthase gene. Weisshaar B; Block A; Armstrong GA; Herrmann A; Schulze-Lefert P; Hahlbrock K Symp Soc Exp Biol; 1991; 45():191-210. PubMed ID: 1843408 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a nuclear protein that binds to three elements within the silencer region of a bean chalcone synthase gene promoter. Harrison MJ; Lawton MA; Lamb CJ; Dixon RA Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2515-9. PubMed ID: 2006188 [TBL] [Abstract][Full Text] [Related]
17. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Hartmann U; Sagasser M; Mehrtens F; Stracke R; Weisshaar B Plant Mol Biol; 2005 Jan; 57(2):155-71. PubMed ID: 15821875 [TBL] [Abstract][Full Text] [Related]
18. Wheat nuclear protein HBP-1 binds to the hexameric sequence in the promoter of various plant genes. Mikami K; Sakamoto A; Takase H; Tabata T; Iwabuchi M Nucleic Acids Res; 1989 Dec; 17(23):9707-17. PubMed ID: 2602142 [TBL] [Abstract][Full Text] [Related]
19. Comparative genomics and regulatory evolution: conservation and function of the Chs and Apetala3 promoters. Koch MA; Weisshaar B; Kroymann J; Haubold B; Mitchell-Olds T Mol Biol Evol; 2001 Oct; 18(10):1882-91. PubMed ID: 11557794 [TBL] [Abstract][Full Text] [Related]
20. Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Armstrong GA; Weisshaar B; Hahlbrock K Plant Cell; 1992 May; 4(5):525-37. PubMed ID: 1498607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]