These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 27806276)
21. Concerted protonation of key histidines triggers membrane interaction of the diphtheria toxin T domain. Perier A; Chassaing A; Raffestin S; Pichard S; Masella M; Ménez A; Forge V; Chenal A; Gillet D J Biol Chem; 2007 Aug; 282(33):24239-45. PubMed ID: 17584737 [TBL] [Abstract][Full Text] [Related]
22. Conformation of the diphtheria toxin T domain in membranes: a site-directed spin-labeling study of the TH8 helix and TL5 loop. Oh KJ; Zhan H; Cui C; Altenbach C; Hubbell WL; Collier RJ Biochemistry; 1999 Aug; 38(32):10336-43. PubMed ID: 10441127 [TBL] [Abstract][Full Text] [Related]
24. pH-triggered conformational switching along the membrane insertion pathway of the diphtheria toxin T-domain. Ladokhin AS Toxins (Basel); 2013 Aug; 5(8):1362-80. PubMed ID: 23925141 [TBL] [Abstract][Full Text] [Related]
25. Accessibility changes within diphtheria toxin T domain upon membrane penetration probed by hydrogen exchange and mass spectrometry. Man P; Montagner C; Vitrac H; Kavan D; Pichard S; Gillet D; Forest E; Forge V J Mol Biol; 2011 Nov; 414(1):123-34. PubMed ID: 21986198 [TBL] [Abstract][Full Text] [Related]
26. Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: at low pH, helices 8 and 9 form a transmembrane hairpin but helices 5-7 form stable nonclassical inserted segments on the cis side of the bilayer. Rosconi MP; Zhao G; London E Biochemistry; 2004 Jul; 43(28):9127-39. PubMed ID: 15248770 [TBL] [Abstract][Full Text] [Related]
27. Cellular Entry of the Diphtheria Toxin Does Not Require the Formation of the Open-Channel State by Its Translocation Domain. Ladokhin AS; Vargas-Uribe M; Rodnin MV; Ghatak C; Sharma O Toxins (Basel); 2017 Sep; 9(10):. PubMed ID: 28937631 [TBL] [Abstract][Full Text] [Related]
28. Oligomerization of a 45 kilodalton fragment of diphtheria toxin at pH 5.0 to a molecule of 20-24 subunits. Bell CE; Poon PH; Schumaker VN; Eisenberg D Biochemistry; 1997 Dec; 36(49):15201-7. PubMed ID: 9398247 [TBL] [Abstract][Full Text] [Related]
29. Reversible refolding of the diphtheria toxin T-domain on lipid membranes. Ladokhin AS; Legmann R; Collier RJ; White SH Biochemistry; 2004 Jun; 43(23):7451-8. PubMed ID: 15182188 [TBL] [Abstract][Full Text] [Related]
30. Behavior of the N-terminal helices of the diphtheria toxin T domain during the successive steps of membrane interaction. Montagner C; Perier A; Pichard S; Vernier G; Ménez A; Gillet D; Forge V; Chenal A Biochemistry; 2007 Feb; 46(7):1878-87. PubMed ID: 17249698 [TBL] [Abstract][Full Text] [Related]
31. The role of proline 345 in diphtheria toxin translocation. Johnson VG; Nicholls PJ; Habig WH; Youle RJ J Biol Chem; 1993 Feb; 268(5):3514-9. PubMed ID: 8429026 [TBL] [Abstract][Full Text] [Related]
32. Mutational analysis of the helical hairpin region of diphtheria toxin transmembrane domain. Silverman JA; Mindell JA; Finkelstein A; Shen WH; Collier RJ J Biol Chem; 1994 Sep; 269(36):22524-32. PubMed ID: 7521329 [TBL] [Abstract][Full Text] [Related]
33. Crucial role of H322 in folding of the diphtheria toxin T-domain into the open-channel state. Vargas-Uribe M; Rodnin MV; Kienker P; Finkelstein A; Ladokhin AS Biochemistry; 2013 May; 52(20):3457-63. PubMed ID: 23621842 [TBL] [Abstract][Full Text] [Related]
34. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin. Wang Y; Kachel K; Pablo L; London E Biochemistry; 1997 Dec; 36(51):16300-8. PubMed ID: 9405065 [TBL] [Abstract][Full Text] [Related]
35. A Hierarchical Approach to Predict Conformation-Dependent Histidine Protonation States in Stable and Flexible Proteins. Sakipov SN; Flores-Canales JC; Kurnikova MG J Phys Chem B; 2019 Jun; 123(24):5024-5034. PubMed ID: 31095377 [TBL] [Abstract][Full Text] [Related]
36. Microsecond Simulations of the Diphtheria Toxin Translocation Domain in Association with Anionic Lipid Bilayers. Flores-Canales JC; Kurnikova M J Phys Chem B; 2015 Sep; 119(36):12074-85. PubMed ID: 26305016 [TBL] [Abstract][Full Text] [Related]
37. Replacement of C-terminal histidines uncouples membrane insertion and translocation in diphtheria toxin T-domain. Rodnin MV; Kyrychenko A; Kienker P; Sharma O; Vargas-Uribe M; Collier RJ; Finkelstein A; Ladokhin AS Biophys J; 2011 Nov; 101(10):L41-3. PubMed ID: 22098755 [TBL] [Abstract][Full Text] [Related]
38. Topography of diphtheria Toxin's T domain in the open channel state. Senzel L; Gordon M; Blaustein RO; Oh KJ; Collier RJ; Finkelstein A J Gen Physiol; 2000 Apr; 115(4):421-34. PubMed ID: 10736310 [TBL] [Abstract][Full Text] [Related]
39. Effects of mutations in proline 345 on insertion of diphtheria toxin into model membranes. Zhan H; Elliott JL; Shen WH; Huynh PD; Finkelstein A; Collier RJ J Membr Biol; 1999 Jan; 167(2):173-81. PubMed ID: 9916148 [TBL] [Abstract][Full Text] [Related]
40. The N-terminal alpha-helix of fragment B of diphtheria toxin promotes translocation of fragment A into the cytoplasm of eukaryotic cells. Madshus IH J Biol Chem; 1994 Jul; 269(26):17723-9. PubMed ID: 8021285 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]