BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 27806570)

  • 21. Mechanism of sulfide-quinone reductase investigated using site-directed mutagenesis and sulfur analysis.
    Griesbeck C; Schütz M; Schödl T; Bathe S; Nausch L; Mederer N; Vielreicher M; Hauska G
    Biochemistry; 2002 Oct; 41(39):11552-65. PubMed ID: 12269799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfide Homeostasis and Nitroxyl Intersect via Formation of Reactive Sulfur Species in
    Peng H; Shen J; Edmonds KA; Luebke JL; Hickey AK; Palmer LD; Chang FJ; Bruce KA; Kehl-Fie TE; Skaar EP; Giedroc DP
    mSphere; 2017; 2(3):. PubMed ID: 28656172
    [No Abstract]   [Full Text] [Related]  

  • 23. On the importance of anion-π interactions in the mechanism of sulfide:quinone oxidoreductase.
    Bauzá A; Quiñonero D; Deyà PM; Frontera A
    Chem Asian J; 2013 Nov; 8(11):2708-13. PubMed ID: 23907989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of Catalytic Promiscuity during Hydrogen Sulfide Oxidation.
    Landry AP; Ballou DP; Banerjee R
    ACS Chem Biol; 2018 Jun; 13(6):1651-1658. PubMed ID: 29715001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of human sulfide: quinone oxidoreductase in H2S metabolism.
    Jackson MR; Melideo SL; Jorns MS
    Methods Enzymol; 2015; 554():255-70. PubMed ID: 25725526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and characterization of sulfide:quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans.
    Wakai S; Tsujita M; Kikumoto M; Manchur MA; Kanao T; Kamimura K
    Biosci Biotechnol Biochem; 2007 Nov; 71(11):2735-42. PubMed ID: 17986789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel enzyme of type VI sulfide:quinone oxidoreductases in purple sulfur photosynthetic bacteria.
    Duzs Á; Tóth A; Németh B; Balogh T; Kós PB; Rákhely G
    Appl Microbiol Biotechnol; 2018 Jun; 102(12):5133-5147. PubMed ID: 29680900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a HMT2-like enzyme for sulfide oxidation from Pseudomonas putida.
    Shibata H; Kobayashi S
    Can J Microbiol; 2006 Aug; 52(8):724-30. PubMed ID: 16917530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Pathway of Sulfide Oxidation to Octasulfur Globules in the Cytoplasm of Aerobic Bacteria.
    Wang T; Ran M; Li X; Liu Y; Xin Y; Liu H; Liu H; Xia Y; Xun L
    Appl Environ Microbiol; 2022 Feb; 88(3):e0194121. PubMed ID: 34878813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional analysis of three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum.
    Chan LK; Morgan-Kiss RM; Hanson TE
    J Bacteriol; 2009 Feb; 191(3):1026-34. PubMed ID: 19028893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A sulfide:quinone oxidoreductase from Chlorobaculum tepidum displays unusual kinetic properties.
    Shuman KE; Hanson TE
    FEMS Microbiol Lett; 2016 Jun; 363(12):. PubMed ID: 27190141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sulfide : quinone oxidoreductase (SQR) from the lugworm Arenicola marina shows cyanide- and thioredoxin-dependent activity.
    Theissen U; Martin W
    FEBS J; 2008 Mar; 275(6):1131-9. PubMed ID: 18248458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration.
    Marcia M; Ermler U; Peng G; Michel H
    Proc Natl Acad Sci U S A; 2009 Jun; 106(24):9625-30. PubMed ID: 19487671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quinone binding site in a type VI sulfide:quinone oxidoreductase.
    Miklovics N; Duzs Á; Balogh F; Paragi G; Rákhely G; Tóth A
    Appl Microbiol Biotechnol; 2022 Nov; 106(22):7505-7517. PubMed ID: 36219222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Response of
    Walsh BJC; Wang J; Edmonds KA; Palmer LD; Zhang Y; Trinidad JC; Skaar EP; Giedroc DP
    mBio; 2020 Jun; 11(3):. PubMed ID: 32576676
    [No Abstract]   [Full Text] [Related]  

  • 36. Organization of the human mitochondrial hydrogen sulfide oxidation pathway.
    Libiad M; Yadav PK; Vitvitsky V; Martinov M; Banerjee R
    J Biol Chem; 2014 Nov; 289(45):30901-10. PubMed ID: 25225291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfide Consumption in Sulfurimonas denitrificans and Heterologous Expression of Its Three Sulfide-Quinone Reductase Homologs.
    Han Y; Perner M
    J Bacteriol; 2016 Apr; 198(8):1260-7. PubMed ID: 26833414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis for persulfide-sensing specificity in a transcriptional regulator.
    Capdevila DA; Walsh BJC; Zhang Y; Dietrich C; Gonzalez-Gutierrez G; Giedroc DP
    Nat Chem Biol; 2021 Jan; 17(1):65-70. PubMed ID: 33106663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1.
    Wakai S; Kikumoto M; Kanao T; Kamimura K
    Biosci Biotechnol Biochem; 2004 Dec; 68(12):2519-28. PubMed ID: 15618623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of Tissue Metabolite Analysis and Enzyme Kinetics To Discriminate between Alternate Pathways for Hydrogen Sulfide Metabolism.
    Augustyn KD; Jackson MR; Jorns MS
    Biochemistry; 2017 Feb; 56(7):986-996. PubMed ID: 28107627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.