BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27806587)

  • 1. Implementation of output prediction models for a passively double-scattered proton therapy system.
    Ferguson S; Ahmad S; Jin H
    Med Phys; 2016 Nov; 43(11):6089. PubMed ID: 27806587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparability of three output prediction models for a compact passively double-scattered proton therapy system.
    Ferguson S; Chen Y; Ferreira C; Islam M; Keeling VP; Lau A; Ahmad S; Jin H
    J Appl Clin Med Phys; 2017 May; 18(3):108-117. PubMed ID: 28422406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning approach to the accurate prediction of monitor units for a compact proton machine.
    Sun B; Lam D; Yang D; Grantham K; Zhang T; Mutic S; Zhao T
    Med Phys; 2018 May; 45(5):2243-2251. PubMed ID: 29500818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitor unit prediction model for wobbling proton therapy with ridge filters.
    Jo K; Chung E; Han Y; Ahn SH; Sheen H; Cho S
    Med Phys; 2021 Dec; 48(12):8107-8116. PubMed ID: 34628659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A procedure for calculation of monitor units for passively scattered proton radiotherapy beams.
    Sahoo N; Zhu XR; Arjomandy B; Ciangaru G; Lii M; Amos R; Wu R; Gillin MT
    Med Phys; 2008 Nov; 35(11):5088-97. PubMed ID: 19070243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitor unit calculations for range-modulated spread-out Bragg peak fields.
    Kooy HM; Schaefer M; Rosenthal S; Bortfeld T
    Phys Med Biol; 2003 Sep; 48(17):2797-808. PubMed ID: 14516102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of output factor, range, and spread-out bragg peak for proton therapy.
    Kim DW; Lim YK; Ahn SH; Shin J; Shin D; Yoon M; Lee SB; Kim DY; Park SY
    Med Dosim; 2011; 36(2):145-52. PubMed ID: 20599372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of an improved dose-per-MU model for double-scattered proton beams to address interbeamline modulation width variability.
    Lin L; Shen J; Ainsley CG; Solberg TD; McDonough JE
    J Appl Clin Med Phys; 2014 May; 15(3):4748. PubMed ID: 24892352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a golden beam data set for the commissioning of a proton double-scattering system in a pencil-beam dose calculation algorithm.
    Slopsema RL; Lin L; Flampouri S; Yeung D; Li Z; McDonough JE; Palta J
    Med Phys; 2014 Sep; 41(9):091710. PubMed ID: 25186385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose monitoring and output correction for the effects of scanning field changes with uniform scanning proton beam.
    Zhao Q; Wu H; Cheng CW; Das IJ
    Med Phys; 2011 Aug; 38(8):4655-61. PubMed ID: 21928638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.
    Hirayama S; Takayanagi T; Fujii Y; Fujimoto R; Fujitaka S; Umezawa M; Nagamine Y; Hosaka M; Yasui K; Omachi C; Toshito T
    Med Phys; 2016 Mar; 43(3):1437-50. PubMed ID: 26936728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease.
    Slopsema RL; Mamalui M; Zhao T; Yeung D; Malyapa R; Li Z
    Med Phys; 2014 Jan; 41(1):011707. PubMed ID: 24387499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the secondary neutral radiation in proton therapy: toward an indirect in vivo dosimetry.
    Carnicer A; Letellier V; Rucka G; Angellier G; Sauerwein W; Herault J
    Med Phys; 2012 Dec; 39(12):7303-16. PubMed ID: 23231280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Changes of the hemodynamics and extravascular lung water after different-volume fluid resuscitation in a piglet model of endotoxic shock].
    Wu F; Lu GP; Lu ZJ; Wu JL; Li Z; Hong JG; Zhang LE
    Zhonghua Er Ke Za Zhi; 2013 Sep; 51(9):649-53. PubMed ID: 24330982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
    Titt U; Zheng Y; Vassiliev ON; Newhauser WD
    Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quality assurance of proton beams using a multilayer ionization chamber system.
    Dhanesar S; Sahoo N; Kerr M; Taylor MB; Summers P; Zhu XR; Poenisch F; Gillin M
    Med Phys; 2013 Sep; 40(9):092102. PubMed ID: 24007171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast range switching of passively scattered proton beams using a modulation wheel and dynamic beam current modulation.
    Sánchez-Parcerisa D; Pourbaix JC; Ainsley CG; Dolney D; Carabe A
    Phys Med Biol; 2014 Apr; 59(7):N19-26. PubMed ID: 24625619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating partial shining effects in proton pencil-beam dose calculation.
    Li Y; Zhang X; Lii M; Sahoo N; Zhu RX; Gillin M; Mohan R
    Phys Med Biol; 2008 Feb; 53(3):605-16. PubMed ID: 18199905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field size dependence of the output factor in passively scattered proton therapy: influence of range, modulation, air gap, and machine settings.
    Daartz J; Engelsman M; Paganetti H; Bussière MR
    Med Phys; 2009 Jul; 36(7):3205-10. PubMed ID: 19673219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive Output Estimation of Double Scattering Proton System With Analytical and Machine Learning Models.
    Zhu J; Cui T; Zhang Y; Zhang Y; Ma C; Liu B; Nie K; Yue NJ; Wang X
    Front Oncol; 2021; 11():756503. PubMed ID: 35174065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.