These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 27806677)

  • 41. Effect of work:rest cycle duration on [Formula: see text] fluctuations during intermittent exercise.
    Combes A; Dekerle J; Bougault V; Daussin FN
    J Sports Sci; 2017 Jan; 35(1):7-13. PubMed ID: 26943697
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ensemble Input of Group III/IV Muscle Afferents to CNS: A Limiting Factor of Central Motor Drive During Endurance Exercise from Normoxia to Moderate Hypoxia.
    Amann M; Dempsey JA
    Adv Exp Med Biol; 2016; 903():325-42. PubMed ID: 27343106
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Performance Enhancement: What Are the Physiological Limits?
    Lundby C; Robach P
    Physiology (Bethesda); 2015 Jul; 30(4):282-92. PubMed ID: 26136542
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Possible factors determining the non-linearity in the VO2-power output relationship in humans: theoretical studies.
    Korzeniewski B; Zoladz JA
    Jpn J Physiol; 2003 Aug; 53(4):271-80. PubMed ID: 14606966
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxygen uptake kinetics during moderate, heavy and severe intensity "submaximal" exercise in humans: the influence of muscle fibre type and capillarisation.
    Pringle JS; Doust JH; Carter H; Tolfrey K; Campbell IT; Sakkas GK; Jones AM
    Eur J Appl Physiol; 2003 May; 89(3-4):289-300. PubMed ID: 12736837
    [TBL] [Abstract][Full Text] [Related]  

  • 46. What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise?
    Ihsan M; Watson G; Abbiss CR
    Sports Med; 2016 Aug; 46(8):1095-109. PubMed ID: 26888646
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of muscle fibre type and fitness on the oxygen uptake/power output slope during incremental exercise in humans.
    Barstow TJ; Jones AM; Nguyen PH; Casaburi R
    Exp Physiol; 2000 Jan; 85(1):109-16. PubMed ID: 10662900
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.
    Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C
    J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of critical power in sport.
    Vanhatalo A; Jones AM; Burnley M
    Int J Sports Physiol Perform; 2011 Mar; 6(1):128-36. PubMed ID: 21487156
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic and neuromuscular responses at critical power from the 3-min all-out test.
    Bergstrom HC; Housh TJ; Zuniga JM; Traylor DA; Lewis RW; Camic CL; Schmidt RJ; Johnson GO
    Appl Physiol Nutr Metab; 2013 Jan; 38(1):7-13. PubMed ID: 23368822
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans.
    Burnley M; Vanhatalo A; Jones AM
    J Appl Physiol (1985); 2012 Jul; 113(2):215-23. PubMed ID: 22556396
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The power-duration relationship of high-intensity exercise: from mathematical parameters to physiological mechanisms.
    Murgatroyd SR; Wylde LA
    J Physiol; 2011 May; 589(Pt 10):2443-5. PubMed ID: 21572143
    [No Abstract]   [Full Text] [Related]  

  • 53. Carbohydrate availability and muscle energy metabolism during intermittent running.
    Foskett A; Williams C; Boobis L; Tsintzas K
    Med Sci Sports Exerc; 2008 Jan; 40(1):96-103. PubMed ID: 18091017
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Consequences of exercise-induced respiratory muscle work.
    Dempsey JA; Romer L; Rodman J; Miller J; Smith C
    Respir Physiol Neurobiol; 2006 Apr; 151(2-3):242-50. PubMed ID: 16616716
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling the expenditure and reconstitution of work capacity above critical power.
    Skiba PF; Chidnok W; Vanhatalo A; Jones AM
    Med Sci Sports Exerc; 2012 Aug; 44(8):1526-32. PubMed ID: 22382171
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Central circulatory and peripheral O2 extraction changes as interactive facilitators of pulmonary O2 uptake during a repeated high-intensity exercise protocol in humans.
    Fukuba Y; Endo MY; Ohe Y; Hirotoshi Y; Kitano A; Shiragiku C; Miura A; Fukuda O; Ueoka H; Miyachi M
    Eur J Appl Physiol; 2007 Mar; 99(4):361-9. PubMed ID: 17165056
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphocreatine content in single fibers of human muscle after sustained submaximal exercise.
    Sahlin K; Söderlund K; Tonkonogi M; Hirakoba K
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C172-8. PubMed ID: 9252454
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interaction between environmental temperature and hypoxia on central and peripheral fatigue during high-intensity dynamic knee extension.
    Lloyd A; Raccuglia M; Hodder S; Havenith G
    J Appl Physiol (1985); 2016 Mar; 120(6):567-79. PubMed ID: 26769955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.