These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2780681)

  • 21. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study.
    Göncüoğlu Taş N; Gökmen V
    Food Chem; 2017 Apr; 221():1911-1922. PubMed ID: 27979180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification.
    Schalkwijk CG; Stehouwer CD; van Hinsbergh VW
    Diabetes Metab Res Rev; 2004; 20(5):369-82. PubMed ID: 15343583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of 2-acetylfuran formation between ribose and glucose in the Maillard reaction.
    Wang Y; Ho CT
    J Agric Food Chem; 2008 Dec; 56(24):11997-2001. PubMed ID: 19090713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Qualitative and Quantitative Profiling of Fructose Degradation Products Revealed the Formation of Thirteen Reactive Carbonyl Compounds and Higher Reactivity Compared to Glucose.
    Ohno R; Auditore A; Gensberger-Reigl S; Saller J; Stützer J; Weigel I; Pischetsrieder M
    J Agric Food Chem; 2024 Aug; 72(34):19131-19142. PubMed ID: 39145730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elevated serum levels of 3-deoxyglucosone, a potent protein-cross-linking intermediate of the Maillard reaction, in uremic patients.
    Niwa T; Takeda N; Miyazaki T; Yoshizumi H; Tatematsu A; Maeda K; Ohara M; Tomiyama S; Niimura K
    Nephron; 1995; 69(4):438-43. PubMed ID: 7777110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Basic Structure of Melanoidins Formed in the Maillard Reaction of 3-Deoxyglucosone and γ-Aminobutyric Acid.
    Bruhns P; Kanzler C; Degenhardt AG; Koch TJ; Kroh LW
    J Agric Food Chem; 2019 May; 67(18):5197-5203. PubMed ID: 31017427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactions of D-glucose with phenolic amino acids: further insights into the competition between Maillard and Pictet-Spengler condensation pathways.
    Manini P; Napolitano A; d'Ischia M
    Carbohydr Res; 2005 Dec; 340(18):2719-27. PubMed ID: 16229826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel enzymatic reaction for converting DNA to CO-DNA.
    Kagawa K; Kagawa H
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Sep; 139(1):77-86. PubMed ID: 15364290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A kinetic model for the glucose-fructose-glycine browning reaction.
    Mundt S; Wedzicha BL
    J Agric Food Chem; 2003 Jun; 51(12):3651-5. PubMed ID: 12769540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ formation of the amino sugars 1-amino-1-deoxy-fructose and 2-amino-2-deoxy-glucose under Maillard reaction conditions in the absence of ammonia.
    Nashalian O; Yaylayan VA
    Food Chem; 2016 Apr; 197(Pt A):489-95. PubMed ID: 26616979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amadori- and N-nitroso-Amadori compounds and their pyrolysis products. Chemical, analytical and biological aspects.
    Röper H; Röper S; Meyer B
    IARC Sci Publ; 1984; (57):101-11. PubMed ID: 6398292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of epicatechin reactions on the mechanisms of Maillard product formation in low moisture model systems.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2007 Jan; 55(2):414-20. PubMed ID: 17227073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monkey 3-deoxyglucosone reductase: tissue distribution and purification of three multiple forms of the kidney enzyme that are identical with dihydrodiol dehydrogenase, aldehyde reductase, and aldose reductase.
    Sato K; Inazu A; Yamaguchi S; Nakayama T; Deyashiki Y; Sawada H; Hara A
    Arch Biochem Biophys; 1993 Dec; 307(2):286-94. PubMed ID: 8274014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system.
    Knol JJ; van Loon WA; Linssen JP; Ruck AL; van Boekel MA; Voragen AG
    J Agric Food Chem; 2005 Jul; 53(15):6133-9. PubMed ID: 16029007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of degradation pathways of Amadori compounds obtained by glycation of opioid pentapeptide and related smaller fragments: stability, reactions, and spectroscopic properties.
    Jakas A; Horvat S
    Biopolymers; 2003 Aug; 69(4):421-31. PubMed ID: 12879488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyridoxal phosphate and hepatocyte growth factor prevent dialysate-induced peritoneal damage.
    Nakamura S; Niwa T
    J Am Soc Nephrol; 2005 Jan; 16(1):144-50. PubMed ID: 15563557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal decomposition of specifically phosphorylated D-glucoses and their role in the control of the Maillard reaction.
    Yaylayan VA; Machiels D; Istasse L
    J Agric Food Chem; 2003 May; 51(11):3358-66. PubMed ID: 12744667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glycation of a lysine-containing tetrapeptide by D-glucose and D-fructose--influence of different reaction conditions on the formation of Amadori/Heyns products.
    Jakas A; Katić A; Bionda N; Horvat S
    Carbohydr Res; 2008 Sep; 343(14):2475-80. PubMed ID: 18656854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic aspects of the Maillard reaction: a critical review.
    van Boekel MA
    Nahrung; 2001 Jun; 45(3):150-9. PubMed ID: 11455780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The deoxyglucose method adapted for studies of glucose metabolism in the early chick embryo.
    Baroffio A; Kucera P
    J Cell Physiol; 1985 Apr; 123(1):111-6. PubMed ID: 3972908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.