These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 27807136)

  • 21. Temperature and evaporative demand drive variation in stomatal and hydraulic traits across grape cultivars.
    Bartlett MK; Sinclair G
    J Exp Bot; 2021 Feb; 72(5):1995-2009. PubMed ID: 33300576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.
    Martorell S; Diaz-Espejo A; Medrano H; Ball MC; Choat B
    Plant Cell Environ; 2014 Mar; 37(3):617-26. PubMed ID: 23937187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trading water for carbon in the future: Effects of elevated CO
    Mueller KE; Ocheltree TW; Kray JA; Bushey JA; Blumenthal DM; Williams DG; Pendall E
    Glob Chang Biol; 2022 Oct; 28(20):5991-6001. PubMed ID: 35751572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest.
    Fu PL; Jiang YJ; Wang AY; Brodribb TJ; Zhang JL; Zhu SD; Cao KF
    Ann Bot; 2012 Jul; 110(1):189-99. PubMed ID: 22585930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. At least it is a dry cold: the global distribution of freeze-thaw and drought stress and the traits that may impart poly-tolerance in conifers.
    McCulloh KA; Augustine SP; Goke A; Jordan R; Krieg CP; O'Keefe K; Smith DD
    Tree Physiol; 2023 Jan; 43(1):1-15. PubMed ID: 36094836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state.
    Scoffoni C; McKown AD; Rawls M; Sack L
    J Exp Bot; 2012 Jan; 63(2):643-58. PubMed ID: 22016424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leaf rehydration capacity: Associations with other indices of drought tolerance and environment.
    John GP; Henry C; Sack L
    Plant Cell Environ; 2018 Nov; 41(11):2638-2653. PubMed ID: 29978483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydraulics Regulate Stomatal Responses to Changes in Leaf Water Status in the Fern
    Cardoso AA; Randall JM; McAdam SAM
    Plant Physiol; 2019 Feb; 179(2):533-543. PubMed ID: 30538169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor.
    Rodriguez-Dominguez CM; Buckley TN; Egea G; de Cires A; Hernandez-Santana V; Martorell S; Diaz-Espejo A
    Plant Cell Environ; 2016 Sep; 39(9):2014-26. PubMed ID: 27255698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought.
    Nolan RH; Tarin T; Santini NS; McAdam SAM; Ruman R; Eamus D
    Plant Cell Environ; 2017 Dec; 40(12):3122-3134. PubMed ID: 28982212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana.
    Beikircher B; Mayr S
    Tree Physiol; 2009 Jun; 29(6):765-75. PubMed ID: 19364707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does the turgor loss point characterize drought response in dryland plants?
    Farrell C; Szota C; Arndt SK
    Plant Cell Environ; 2017 Aug; 40(8):1500-1511. PubMed ID: 28342210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice.
    Wang X; Du T; Huang J; Peng S; Xiong D
    J Exp Bot; 2018 Jul; 69(16):4033-4045. PubMed ID: 29788146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different combinations of morpho-physiological traits are responsible for tolerance to drought in wild tomatoes Solanum chilense and Solanum peruvianum.
    Tapia G; Méndez J; Inostroza L
    Plant Biol (Stuttg); 2016 May; 18(3):406-16. PubMed ID: 26499789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correlations between leaf economics, mechanical resistance and drought tolerance across 41 cycad species.
    Meng YY; Xiang W; Wen Y; Huang DL; Cao KF; Zhu SD
    Ann Bot; 2022 Sep; 130(3):345-354. PubMed ID: 34871356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Stomatal regulation of plants in response to drought stress].
    Luo DD; Wang CK; Jin Y
    Ying Yong Sheng Tai Xue Bao; 2019 Dec; 30(12):4333-4343. PubMed ID: 31840480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of leaf structure and drought tolerance in species of Californian Ceanothus.
    Fletcher LR; Cui H; Callahan H; Scoffoni C; John GP; Bartlett MK; Burge DO; Sack L
    Am J Bot; 2018 Oct; 105(10):1672-1687. PubMed ID: 30368798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates.
    Blackman CJ; Gleason SM; Chang Y; Cook AM; Laws C; Westoby M
    Ann Bot; 2014 Sep; 114(3):435-40. PubMed ID: 25006181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance.
    Markesteijn L; Poorter L; Bongers F; Paz H; Sack L
    New Phytol; 2011 Jul; 191(2):480-495. PubMed ID: 21477008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring leaf hydraulic traits to predict drought tolerance of Eucalyptus clones.
    Oliveira LA; Cardoso AA; Andrade MT; Pereira TS; Araújo WL; Santos GA; Damatta FM; Martins SCV
    Tree Physiol; 2022 Sep; 42(9):1750-1761. PubMed ID: 35388901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.