These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27807346)

  • 1. Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks.
    Li L; Wing BA; Bui TH; McDermott JM; Slater GF; Wei S; Lacrampe-Couloume G; Lollar BS
    Nat Commun; 2016 Oct; 7():13252. PubMed ID: 27807346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of the Precambrian continental lithosphere to global H2 production.
    Lollar BS; Onstott TC; Lacrampe-Couloume G; Ballentine CJ
    Nature; 2014 Dec; 516(7531):379-82. PubMed ID: 25519136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Growth of Halophilic Bacteria in Saline Fracture Fluids from 2.4 km below Surface in the Deep Canadian Shield.
    Wilpiszeski RL; Sherwood Lollar B; Warr O; House CH
    Life (Basel); 2020 Nov; 10(12):. PubMed ID: 33255232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogeological controls on microbial activity and habitability in the Precambrian continental crust.
    Song M; Warr O; Telling J; Sherwood Lollar B
    Geobiology; 2024; 22(2):e12592. PubMed ID: 38445449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogeologic controls on episodic H2 release from precambrian fractured rocks--energy for deep subsurface life on earth and mars.
    Sherwood Lollar B; Voglesonger K; Lin LH; Lacrampe-Couloume G; Telling J; Abrajano TA; Onstott TC; Pratt LM
    Astrobiology; 2007 Dec; 7(6):971-86. PubMed ID: 18163873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Earth-like Habitable Environments in the Subsurface of Mars.
    Tarnas JD; Mustard JF; Sherwood Lollar B; Stamenković V; Cannon KM; Lorand JP; Onstott TC; Michalski JR; Warr O; Palumbo AM; Plesa AC
    Astrobiology; 2021 Jun; 21(6):741-756. PubMed ID: 33885329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric influence of Earth's earliest sulfur cycle.
    Farquhar J; Bao H; Thiemens M
    Science; 2000 Aug; 289(5480):756-9. PubMed ID: 10926533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Stable Isotopic Geochemistry of the Sulfur and Carbon Cycles in a Modern Karst Environment.
    Böttcher ME
    Isotopes Environ Health Stud; 1999 Sep; 35(1-2):39-61. PubMed ID: 29016210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Annual sulfur cycle in a warm monomictic lake with sub-millimolar sulfate concentrations.
    Knossow N; Blonder B; Eckert W; Turchyn AV; Antler G; Kamyshny A
    Geochem Trans; 2015; 16():7. PubMed ID: 26140024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogeochemical signals from deep microbial life in terrestrial crust.
    Suzuki Y; Konno U; Fukuda A; Komatsu DD; Hirota A; Watanabe K; Togo Y; Morikawa N; Hagiwara H; Aosai D; Iwatsuki T; Tsunogai U; Nagao S; Ito K; Mizuno T
    PLoS One; 2014; 9(12):e113063. PubMed ID: 25517230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial life associated with low-temperature alteration of ultramafic rocks in the Leka ophiolite complex.
    Daae FL; Økland I; Dahle H; Jørgensen SL; Thorseth IH; Pedersen RB
    Geobiology; 2013 Jul; 11(4):318-39. PubMed ID: 23551703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and loss of metastable brucite: does Fe(II)-bearing brucite support microbial activity in serpentinizing ecosystems?
    Templeton AS; Ellison ET
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2165):20180423. PubMed ID: 31902337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depth and Dissolved Organic Carbon Shape Microbial Communities in Surface Influenced but Not Ancient Saline Terrestrial Aquifers.
    Lopez-Fernandez M; Åström M; Bertilsson S; Dopson M
    Front Microbiol; 2018; 9():2880. PubMed ID: 30538690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of water radiolysis to marine sedimentary life.
    Sauvage JF; Flinders A; Spivack AJ; Pockalny R; Dunlea AG; Anderson CH; Smith DC; Murray RW; D'Hondt S
    Nat Commun; 2021 Feb; 12(1):1297. PubMed ID: 33637712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Deep Rocky Biosphere: New Geomicrobiological Insights and Prospects.
    Takamiya H; Kouduka M; Suzuki Y
    Front Microbiol; 2021; 12():785743. PubMed ID: 34917063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Microbial Groups Drive Productivity in an Archean Iron Formation.
    Sheik CS; Badalamenti JP; Telling J; Hsu D; Alexander SC; Bond DR; Gralnick JA; Lollar BS; Toner BM
    Front Microbiol; 2021; 12():627595. PubMed ID: 33859627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Habitability of the marine serpentinite subsurface: a case study of the Lost City hydrothermal field.
    Lang SQ; Brazelton WJ
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2165):20180429. PubMed ID: 31902336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractionation of sulfur and hydrogen isotopes in Desulfovibrio vulgaris with perturbed DsrC expression.
    Leavitt WD; Venceslau SS; Pereira IA; Johnston DT; Bradley AS
    FEMS Microbiol Lett; 2016 Oct; 363(20):. PubMed ID: 27702753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Defining Ecosystem Functions of the Terrestrial Subsurface Biosphere.
    Meyer-Dombard DR; Malas J
    Front Microbiol; 2022; 13():891528. PubMed ID: 35722320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Major phylum-level differences between porefluid and host rock bacterial communities in the terrestrial deep subsurface.
    Momper L; Kiel Reese B; Zinke L; Wanger G; Osburn MR; Moser D; Amend JP
    Environ Microbiol Rep; 2017 Oct; 9(5):501-511. PubMed ID: 28677247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.