BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 27807442)

  • 1. Tetrapyrrole Signaling in Plants.
    Larkin RM
    Front Plant Sci; 2016; 7():1586. PubMed ID: 27807442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of tetrapyrroles in plastid retrograde signaling and tolerance to environmental stresses.
    Zhang ZW; Zhang GC; Zhu F; Zhang DW; Yuan S
    Planta; 2015 Dec; 242(6):1263-76. PubMed ID: 26297452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Tetrapyrrole- and GUN1-Dependent Signaling on Chloroplast Biogenesis.
    Shimizu T; Masuda T
    Plants (Basel); 2021 Jan; 10(2):. PubMed ID: 33494334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The retrograde signaling protein GUN1 regulates tetrapyrrole biosynthesis.
    Shimizu T; Kacprzak SM; Mochizuki N; Nagatani A; Watanabe S; Shimada T; Tanaka K; Hayashi Y; Arai M; Leister D; Okamoto H; Terry MJ; Masuda T
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24900-24906. PubMed ID: 31732672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation and function of tetrapyrrole biosynthesis in plants and algae.
    Brzezowski P; Richter AS; Grimm B
    Biochim Biophys Acta; 2015 Sep; 1847(9):968-85. PubMed ID: 25979235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation.
    Moulin M; McCormac AC; Terry MJ; Smith AG
    Proc Natl Acad Sci U S A; 2008 Sep; 105(39):15178-83. PubMed ID: 18818314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between hy1 and gun mutants of Arabidopsis, and their implications for plastid/nuclear signalling.
    Vinti G; Hills A; Campbell S; Bowyer JR; Mochizuki N; Chory J; López-Juez E
    Plant J; 2000 Dec; 24(6):883-94. PubMed ID: 11135121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis.
    Tadini L; Pesaresi P; Kleine T; Rossi F; Guljamow A; Sommer F; Mühlhaus T; Schroda M; Masiero S; Pribil M; Rothbart M; Hedtke B; Grimm B; Leister D
    Plant Physiol; 2016 Mar; 170(3):1817-30. PubMed ID: 26823545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient accumulation of Mg-protoporphyrin IX regulates expression of PhANGs - New evidence for the signaling role of tetrapyrroles in mature Arabidopsis plants.
    Zhang ZW; Yuan S; Feng H; Xu F; Cheng J; Shang J; Zhang DW; Lin HH
    J Plant Physiol; 2011 May; 168(7):714-21. PubMed ID: 21216024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetrapyrrole biosynthesis in higher plants.
    Tanaka R; Tanaka A
    Annu Rev Plant Biol; 2007; 58():321-46. PubMed ID: 17227226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis.
    Terry MJ; Smith AG
    Front Plant Sci; 2013; 4():14. PubMed ID: 23407626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetrapyrrole biosynthesis pathway regulates plastid-to-nucleus signaling by controlling plastid gene expression in plants.
    Wang Y; Wang Y; Zhu X; Ren Y; Dong H; Duan E; Teng X; Zhao H; Chen R; Chen X; Lei J; Yang H; Tian Y; Chen L; Liu X; Liu S; Jiang L; Wang H; Wan J
    Plant Commun; 2023 Jan; 4(1):100411. PubMed ID: 35836377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrapyrroles as Endogenous TSPO Ligands in Eukaryotes and Prokaryotes: Comparisons with Synthetic Ligands.
    Veenman L; Vainshtein A; Yasin N; Azrad M; Gavish M
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27271616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetrapyrrole Metabolism in Arabidopsis thaliana.
    Tanaka R; Kobayashi K; Masuda T
    Arabidopsis Book; 2011; 9():e0145. PubMed ID: 22303270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrapyrrole regulation of nuclear gene expression.
    Brusslan JA; Peterson MP
    Photosynth Res; 2002; 71(3):185-94. PubMed ID: 16228131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced deactivation of genes encoding chlorophyll biosynthesis enzymes disentangles tetrapyrrole-mediated retrograde signaling.
    Schlicke H; Hartwig AS; Firtzlaff V; Richter AS; Glässer C; Maier K; Finkemeier I; Grimm B
    Mol Plant; 2014 Jul; 7(7):1211-27. PubMed ID: 24658417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis.
    Czarnecki O; Peter E; Grimm B
    Methods Mol Biol; 2011; 775():357-85. PubMed ID: 21863454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of tetrapyrroles in inter-organellar signaling in plants and algae.
    Vasileuskaya Z; Oster U; Beck CF
    Photosynth Res; 2004; 82(3):289-99. PubMed ID: 16143841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastid signalling to the nucleus: messengers still lost in the mists?
    Kleine T; Voigt C; Leister D
    Trends Genet; 2009 Apr; 25(4):185-92. PubMed ID: 19303165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrapyrrole-based drought stress signalling.
    Nagahatenna DS; Langridge P; Whitford R
    Plant Biotechnol J; 2015 May; 13(4):447-59. PubMed ID: 25756609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.