These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27807524)

  • 1. Effect on the parameters of the high-heel shoe and transfer time of ground reaction force during level walking.
    Hyun SH; Kim YP; Ryew CC
    J Exerc Rehabil; 2016 Oct; 12(5):451-455. PubMed ID: 27807524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of heel design in an orthopedic shoe on ground reaction forces during walking.
    Daryabor A; Saeedi H; Ghasemi MS; Yazdani M; Kamali M; Nabavi H; Curran S; Amini N
    Prosthet Orthot Int; 2016 Oct; 40(5):598-605. PubMed ID: 26271262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of heel height on utilized coefficient of friction during walking.
    Blanchette MG; Brault JR; Powers CM
    Gait Posture; 2011 May; 34(1):107-10. PubMed ID: 21536444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of lower limb kinetic on carrying infant by hip seat carrier during high heel gait.
    Hyun SH; Ryew CC
    J Exerc Rehabil; 2018 Dec; 14(6):1092-1095. PubMed ID: 30656175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does shoe heel design influence ground reaction forces and knee moments during maximum lunges in elite and intermediate badminton players?
    Lam WK; Ryue J; Lee KK; Park SK; Cheung JT; Ryu J
    PLoS One; 2017; 12(3):e0174604. PubMed ID: 28334016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of heel height and shoe insert on comfort perception and biomechanical performance of young female adults during walking.
    Hong WH; Lee YH; Chen HC; Pei YC; Wu CY
    Foot Ankle Int; 2005 Dec; 26(12):1042-8. PubMed ID: 16390637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of heel height on in-shoe localized triaxial stresses.
    Cong Y; Cheung JT; Leung AK; Zhang M
    J Biomech; 2011 Aug; 44(12):2267-72. PubMed ID: 21705002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of heel base area and walking speed on the utilized coefficient of friction during high-heeled walking.
    Park S; Park H; Park J
    Work; 2019; 64(2):397-405. PubMed ID: 31524186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the shoe-rung friction requirements during ladder climbing.
    Martin ER; Pliner EM; Beschorner KE
    J Biomech; 2020 Jan; 99():109507. PubMed ID: 31780121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of shoe modifications on center of pressure and in-shoe plantar pressures.
    Xu H; Akai M; Kakurai S; Yokota K; Kaneko H
    Am J Phys Med Rehabil; 1999; 78(6):516-24. PubMed ID: 10574166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of modified short-leg walkers on ground reaction force characteristics.
    Keefer M; King J; Powell D; Krusenklaus JH; Zhang S
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1172-7. PubMed ID: 18701198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical stimulation of the foot sole in a supine position for ground reaction force simulation.
    Fang J; Vuckovic A; Galen S; Conway BA; Hunt KJ
    J Neuroeng Rehabil; 2014 Nov; 11():159. PubMed ID: 25432580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the effectiveness of materials in attenuating high frequency shock during gait using filterbank analysis.
    Gillespie KA; Dickey JP
    Clin Biomech (Bristol, Avon); 2003 Jan; 18(1):50-9. PubMed ID: 12527247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different methods to extract the required coefficient of friction for level walking.
    Chang WR; Chang CC; Matz S
    Ergonomics; 2012; 55(3):308-15. PubMed ID: 22409168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower extremity mechanics and energy cost of walking in high-heeled shoes.
    Ebbeling CJ; Hamill J; Crussemeyer JA
    J Orthop Sports Phys Ther; 1994 Apr; 19(4):190-6. PubMed ID: 8173565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower-extremity dynamics of walking in neuropathic diabetic patients who wear a forefoot-offloading shoe.
    Bus SA; Maas JC; Otterman NM
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():21-26. PubMed ID: 28985487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of an In-shoe Orthotic Heel Lift on Loading of the Achilles Tendon During Shod Walking.
    Wulf M; Wearing SC; Hooper SL; Bartold S; Reed L; Brauner T
    J Orthop Sports Phys Ther; 2016 Feb; 46(2):79-86. PubMed ID: 26755409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of transverse shear force on the required coefficient of friction for level walking.
    Chang WR; Chang CC; Matz S
    Hum Factors; 2011 Oct; 53(5):461-73. PubMed ID: 22046720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematics of center of mass and center of pressure predict friction requirement at shoe-floor interface during walking.
    Yamaguchi T; Yano M; Onodera H; Hokkirigawa K
    Gait Posture; 2013 Jun; 38(2):209-14. PubMed ID: 23218767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait biomechanics of a second generation unstable shoe.
    Gardner JK; Zhang S; Paquette MR; Milner CE; Brock E
    J Appl Biomech; 2014 Aug; 30(4):501-7. PubMed ID: 24603755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.