These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27807538)

  • 1. Co-Digestion of Sugar Beet Silage Increases Biogas Yield from Fibrous Substrates.
    Ahmed S; Einfalt D; Kazda M
    Biomed Res Int; 2016; 2016():2147513. PubMed ID: 27807538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of on-demand biogas production by using sugar beet silage.
    Ahmed S; Kazda M
    Anaerobe; 2017 Aug; 46():114-121. PubMed ID: 28465255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse.
    Ziemiński K; Kowalska-Wentel M
    Bioresour Technol; 2015 Mar; 180():274-80. PubMed ID: 25618496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is the continuous two-stage anaerobic digestion process well suited for all substrates?
    Lindner J; Zielonka S; Oechsner H; Lemmer A
    Bioresour Technol; 2016 Jan; 200():470-6. PubMed ID: 26519699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foam formation in biogas plants caused by anaerobic digestion of sugar beet.
    Moeller L; Lehnig M; Schenk J; Zehnsdorf A
    Bioresour Technol; 2015 Feb; 178():270-277. PubMed ID: 25446785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable operation during pilot-scale anaerobic digestion of nutrient-supplemented maize/sugar beet silage.
    Nges IA; Björn A; Björnsson L
    Bioresour Technol; 2012 Aug; 118():445-54. PubMed ID: 22717562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beneficial effects of intermittent feedstock management on biogas and methane production.
    Maurus K; Ahmed S; Kazda M
    Bioresour Technol; 2020 May; 304():123004. PubMed ID: 32087544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionally redundant but dissimilar microbial communities within biogas reactors treating maize silage in co-fermentation with sugar beet silage.
    Langer SG; Ahmed S; Einfalt D; Bengelsdorf FR; Kazda M
    Microb Biotechnol; 2015 Sep; 8(5):828-36. PubMed ID: 26200922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates.
    Herrmann C; Kalita N; Wall D; Xia A; Murphy JD
    Bioresour Technol; 2016 Aug; 214():328-337. PubMed ID: 27152773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of sugar beet pulp stillage for co-digestion with sewage sludge and poultry manure.
    Borowski S; Kucner M
    Waste Manag Res; 2019 Oct; 37(10):1025-1032. PubMed ID: 30967060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-ensiling of straw with sugar beet leaves increases the methane yield from straw.
    Larsen SU; Hjort-Gregersen K; Vazifehkhoran AH; Triolo JM
    Bioresour Technol; 2017 Dec; 245(Pt A):106-115. PubMed ID: 28892679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-stage anaerobic digestion of sugar beet silage: The effect of the pH-value on process parameters and process efficiency.
    Kumanowska E; Uruñuela Saldaña M; Zielonka S; Oechsner H
    Bioresour Technol; 2017 Dec; 245(Pt A):876-883. PubMed ID: 28926921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-continuous anaerobic co-digestion of sugar beet byproduct and pig manure: Effect of the organic loading rate (OLR) on process performance.
    Aboudi K; Álvarez-Gallego CJ; Romero-García LI
    Bioresour Technol; 2015 Oct; 194():283-90. PubMed ID: 26210141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic variation of the microbial community structure during the long-time mono-fermentation of maize and sugar beet silage.
    Klang J; Theuerl S; Szewzyk U; Huth M; Tölle R; Klocke M
    Microb Biotechnol; 2015 Sep; 8(5):764-75. PubMed ID: 25712194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production.
    Ziemiński K; Romanowska I; Kowalska M
    Waste Manag; 2012 Jun; 32(6):1131-7. PubMed ID: 22342637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demand-driven biogas production from sugar beet silage in a novel fixed bed disc reactor under mesophilic and thermophilic conditions.
    Terboven C; Ramm P; Herrmann C
    Bioresour Technol; 2017 Oct; 241():582-592. PubMed ID: 28601776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions.
    Li Y; Zhang R; Chen C; Liu G; He Y; Liu X
    Bioresour Technol; 2013 Dec; 149():406-12. PubMed ID: 24135565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production.
    Solli L; Bergersen O; Sørheim R; Briseid T
    Waste Manag; 2014 Aug; 34(8):1553-9. PubMed ID: 24820663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of Ni, Co and Mo supplementation on methane yield from anaerobic mono-digestion of maize silage.
    Evranos B; Demirel B
    Environ Technol; 2015; 36(9-12):1556-62. PubMed ID: 25495753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of a novel two-phase continuously fed leach bed reactor for demand-based biogas production from maize silage.
    Linke B; Rodríguez-Abalde Á; Jost C; Krieg A
    Bioresour Technol; 2015 Feb; 177():34-40. PubMed ID: 25479391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.