These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
590 related articles for article (PubMed ID: 27807785)
21. Mobility and natural attenuation of metals and arsenic in acidic waters of the drainage system of Timok River from Bor copper mines (Serbia) to Danube River. Đorđievski S; Ishiyama D; Ogawa Y; Stevanović Z Environ Sci Pollut Res Int; 2018 Sep; 25(25):25005-25019. PubMed ID: 29934829 [TBL] [Abstract][Full Text] [Related]
22. Mercury Pollution in Soils from the Yacuambi River (Ecuadorian Amazon) as a Result of Gold Placer Mining. López-Blanco C; Collahuazo L; Torres S; Chinchay L; Ayala D; Benítez P Bull Environ Contam Toxicol; 2015 Sep; 95(3):311-6. PubMed ID: 26183387 [TBL] [Abstract][Full Text] [Related]
23. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland]. Jian MF; Li LY; Xu PF; Chen PQ; Xiong JQ; Zhou XL Huan Jing Ke Xue; 2014 May; 35(5):1759-65. PubMed ID: 25055663 [TBL] [Abstract][Full Text] [Related]
24. A multi-disciplinary approach to understanding the impacts of mines on traditional uses of water in Northern Mongolia. McIntyre N; Bulovic N; Cane I; McKenna P Sci Total Environ; 2016 Jul; 557-558():404-14. PubMed ID: 27016688 [TBL] [Abstract][Full Text] [Related]
25. Accumulated state assessment of the Peace-Athabasca-Slave River system. Dubé MG; Wilson JE Integr Environ Assess Manag; 2013 Jul; 9(3):405-25. PubMed ID: 22888030 [TBL] [Abstract][Full Text] [Related]
26. Quantifying the impacts of artisanal gold mining on a tropical river system using mercury isotopes. Goix S; Maurice L; Laffont L; Rinaldo R; Lagane C; Chmeleff J; Menges J; Heimbürger LE; Maury-Brachet R; Sonke JE Chemosphere; 2019 Mar; 219():684-694. PubMed ID: 30557725 [TBL] [Abstract][Full Text] [Related]
27. Effects of mining activities on evolution of water quality of karst waters in Midwestern Guizhou, China: evidences from hydrochemistry and isotopic composition. Li X; Wu P; Han Z; Zha X; Ye H; Qin Y Environ Sci Pollut Res Int; 2018 Jan; 25(2):1220-1230. PubMed ID: 29082473 [TBL] [Abstract][Full Text] [Related]
28. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Ferati F; Kerolli-Mustafa M; Kraja-Ylli A Environ Monit Assess; 2015 Jun; 187(6):338. PubMed ID: 25958086 [TBL] [Abstract][Full Text] [Related]
29. Heavy metals in waters and suspended sediments affected by a mine tailing spill in the upper San Lorenzo River, Northwestern México. Páez-Osuna F; Bojórquez-Leyva H; Bergés-Tiznado M; Rubio-Hernández OA; Fierro-Sañudo JF; Ramírez-Rochín J; León-Cañedo JA Bull Environ Contam Toxicol; 2015 May; 94(5):583-8. PubMed ID: 25636437 [TBL] [Abstract][Full Text] [Related]
30. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal). Candeias C; Ávila PF; Ferreira da Silva E; Teixeira JP Environ Monit Assess; 2015 Mar; 187(3):135. PubMed ID: 25702148 [TBL] [Abstract][Full Text] [Related]
31. [Pollution and Potential Ecology Risk Evaluation of Heavy Metals in River Water, Top Sediments on Bed and Soils Along Banks of Bortala River, Northwest China]. Zhang ZY; Abuduwaili J; Jiang FQ Huan Jing Ke Xue; 2015 Jul; 36(7):2422-9. PubMed ID: 26489307 [TBL] [Abstract][Full Text] [Related]
32. Causes and impacts of a mine water spill from an acidic pit lake (Iberian Pyrite Belt). Olías M; Cánovas CR; Basallote MD; Macías F; Pérez-López R; González RM; Millán-Becerro R; Nieto JM Environ Pollut; 2019 Jul; 250():127-136. PubMed ID: 30991281 [TBL] [Abstract][Full Text] [Related]
33. Stormflow hydrochemistry of a river draining an abandoned metal mine: the Afon Twymyn, central Wales. Byrne P; Reid I; Wood PJ Environ Monit Assess; 2013 Mar; 185(3):2817-32. PubMed ID: 22752965 [TBL] [Abstract][Full Text] [Related]
34. Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the Lower Murray River after a severe drought. Mosley LM; Fitzpatrick RW; Palmer D; Leyden E; Shand P Sci Total Environ; 2014 Jul; 485-486():281-291. PubMed ID: 24727046 [TBL] [Abstract][Full Text] [Related]
35. Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage: a case study in Dabaoshan Mine, China. Zhao H; Xia B; Qin J; Zhang J J Environ Sci (China); 2012; 24(6):979-89. PubMed ID: 23505864 [TBL] [Abstract][Full Text] [Related]
36. Geochemical evaluation of present-day Tuul River sediments, Ulaanbaatar basin, Mongolia. Dalai B; Ishiga H Environ Monit Assess; 2013 Mar; 185(3):2869-81. PubMed ID: 22773081 [TBL] [Abstract][Full Text] [Related]
37. Distribution, Sources, and Water Quality Assessment of Dissolved Heavy Metals in the Jiulongjiang River Water, Southeast China. Liang B; Han G; Liu M; Yang K; Li X; Liu J Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30563145 [TBL] [Abstract][Full Text] [Related]
38. Multi-phase distribution and comprehensive ecological risk assessment of heavy metal pollutants in a river affected by acid mine drainage. Liao J; Ru X; Xie B; Zhang W; Wu H; Wu C; Wei C Ecotoxicol Environ Saf; 2017 Jul; 141():75-84. PubMed ID: 28319862 [TBL] [Abstract][Full Text] [Related]
39. Water quality assessment of rivers in Mongolia. Kelderman P; Batima P Water Sci Technol; 2006; 53(10):111-9. PubMed ID: 16838695 [TBL] [Abstract][Full Text] [Related]
40. The spatial distribution and accumulation characteristics of heavy metals in steppe soils around three mining areas in Xilinhot in Inner Mongolia, China. Gao Y; Liu H; Liu G Environ Sci Pollut Res Int; 2017 Nov; 24(32):25416-25430. PubMed ID: 28932981 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]