BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27807837)

  • 1. Tissue Engineering Platforms to Replicate the Tumor Microenvironment of Multiple Myeloma.
    Zhang W; Lee WY; Zilberberg J
    Methods Mol Biol; 2017; 1513():171-191. PubMed ID: 27807837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex Vivo Maintenance of Primary Human Multiple Myeloma Cells through the Optimization of the Osteoblastic Niche.
    Zhang W; Gu Y; Sun Q; Siegel DS; Tolias P; Yang Z; Lee WY; Zilberberg J
    PLoS One; 2015; 10(5):e0125995. PubMed ID: 25973790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patient-specific 3D microfluidic tissue model for multiple myeloma.
    Zhang W; Lee WY; Siegel DS; Tolias P; Zilberberg J
    Tissue Eng Part C Methods; 2014 Aug; 20(8):663-70. PubMed ID: 24294886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well plate-based perfusion culture device for tissue and tumor microenvironment replication.
    Zhang W; Gu Y; Hao Y; Sun Q; Konior K; Wang H; Zilberberg J; Lee WY
    Lab Chip; 2015 Jul; 15(13):2854-2863. PubMed ID: 26021852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells.
    Ong LJY; Chong LH; Jin L; Singh PK; Lee PS; Yu H; Ananthanarayanan A; Leo HL; Toh YC
    Biotechnol Bioeng; 2017 Oct; 114(10):2360-2370. PubMed ID: 28542705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrow-derived osteoblastic cells in porous ceramic materials.
    Wang Y; Uemura T; Dong J; Kojima H; Tanaka J; Tateishi T
    Tissue Eng; 2003 Dec; 9(6):1205-14. PubMed ID: 14670108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic chip containing multiple 3D nanofibrous scaffolds for culturing human pluripotent stem cells.
    Wertheim L; Shapira A; Amir RJ; Dvir T
    Nanotechnology; 2018 Apr; 29(13):13LT01. PubMed ID: 29384490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro.
    Cartmell SH; Porter BD; García AJ; Guldberg RE
    Tissue Eng; 2003 Dec; 9(6):1197-203. PubMed ID: 14670107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Proliferation and differentiation of human osteoblasts from the nasal septum in a new perfusion culture system].
    Bücheler M; Bücheler BM; Hagenau K; Hanke G; Bootz F
    HNO; 2008 Mar; 56(3):301-5. PubMed ID: 18286254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Dynamic Culture Models of Multiple Myeloma.
    Ferrarini M; Steimberg N; Boniotti J; Berenzi A; Belloni D; Mazzoleni G; Ferrero E
    Methods Mol Biol; 2017; 1612():177-190. PubMed ID: 28634943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proliferative and Differentiation Potential of Multipotent Mesenchymal Stem Cells Cultured on Biocompatible Polymer Scaffolds with Various Physicochemical Characteristics.
    Rodina AV; Tenchurin TK; Saprykin VP; Shepelev AD; Mamagulashvili VG; Grigor'ev TE; Moskaleva EY; Chvalun SN; Severin SE
    Bull Exp Biol Med; 2017 Feb; 162(4):488-495. PubMed ID: 28243915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow perfusion culture of human fetal bone cells in large beta-tricalcium phosphate scaffold with controlled architecture.
    Wang L; Hu YY; Wang Z; Li X; Li DC; Lu BH; Xu SF
    J Biomed Mater Res A; 2009 Oct; 91(1):102-13. PubMed ID: 18767058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Three-dimensional flow perfusion culture enhances proliferation of human fetal osteoblasts in large scaffold with controlled architecture].
    Wang L; Ma ZS; Li DC; Lei W; Hu YY; Wang Z; Li X; Zhang Y; Pei GX
    Zhonghua Yi Xue Za Zhi; 2013 Jul; 93(25):1970-4. PubMed ID: 24169246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering.
    Du D; Furukawa KS; Ushida T
    Biotechnol Bioeng; 2009 Apr; 102(6):1670-8. PubMed ID: 19160373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a dynamic three-dimensional cell culturing microenvironment using a 'sandwich' structure-liked microfluidic device with 3D printing scaffold.
    Ding L; Liu C; Yin S; Zhou Z; Chen J; Chen X; Chen L; Wang D; Liu B; Liu Y; Wei J; Li J
    Biofabrication; 2022 Sep; 14(4):. PubMed ID: 35973411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of TRACER: tissue roll for analysis of cellular environment and response.
    Rodenhizer D; Cojocari D; Wouters BG; McGuigan AP
    Biofabrication; 2016 Oct; 8(4):045008. PubMed ID: 27754980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micropatterns of Matrigel for three-dimensional epithelial cultures.
    Sodunke TR; Turner KK; Caldwell SA; McBride KW; Reginato MJ; Noh HM
    Biomaterials; 2007 Sep; 28(27):4006-16. PubMed ID: 17574663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long term perfusion system supporting adipogenesis.
    Abbott RD; Raja WK; Wang RY; Stinson JA; Glettig DL; Burke KA; Kaplan DL
    Methods; 2015 Aug; 84():84-9. PubMed ID: 25843606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.