These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27807979)

  • 21. Electrospinning Processing Techniques for the Manufacturing of Composite Dielectric Elastomer Fibers.
    Ramirez M; Vaught L; Law C; Meyer JL; Elhajjar R
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-resolution Patterning Using Two Modes of Electrohydrodynamic Jet: Drop on Demand and Near-field Electrospinning.
    Phung TH; Oh S; Kwon KS
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30059021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanofibrous patterns by direct electrospinning of nanofibers onto topographically structured non-conductive substrates.
    Zhao S; Zhou Q; Long YZ; Sun GH; Zhang Y
    Nanoscale; 2013 Jun; 5(11):4993-5000. PubMed ID: 23636504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melt electrospinning and its technologization in tissue engineering.
    Muerza-Cascante ML; Haylock D; Hutmacher DW; Dalton PD
    Tissue Eng Part B Rev; 2015 Apr; 21(2):187-202. PubMed ID: 25341031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Melt Electrospinning Writing of Highly Ordered Large Volume Scaffold Architectures.
    Wunner FM; Wille ML; Noonan TG; Bas O; Dalton PD; De-Juan-Pardo EM; Hutmacher DW
    Adv Mater; 2018 May; 30(20):e1706570. PubMed ID: 29633443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning.
    Lee SJ; Nowicki M; Harris B; Zhang LG
    Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved fabrication of melt electrospun tissue engineering scaffolds using direct writing and advanced electric field control.
    Ristovski N; Bock N; Liao S; Powell SK; Ren J; Kirby GT; Blackwood KA; Woodruff MA
    Biointerphases; 2015 Mar; 10(1):011006. PubMed ID: 25810272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system.
    Kucinska-Lipka J; Gubanska I; Janik H; Sienkiewicz M
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():166-76. PubMed ID: 25491973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of methacrylic acid copolymer S nano-fibers using a solvent-based electrospinning method and their application in pharmaceutical formulations.
    Hamori M; Shimizu Y; Yoshida K; Fukushima K; Sugioka N; Nishimura A; Naruhashi K; Shibata N
    Chem Pharm Bull (Tokyo); 2015; 63(2):81-7. PubMed ID: 25748778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Near-Field Electrospinning for Three-Dimensional Stacked Nanoarchitectures with High Aspect Ratios.
    Park YS; Kim J; Oh JM; Park S; Cho S; Ko H; Cho YK
    Nano Lett; 2020 Jan; 20(1):441-448. PubMed ID: 31763856
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity.
    Jin G; Lee S; Kim SH; Kim M; Jang JH
    Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrospinning: a fascinating fiber fabrication technique.
    Bhardwaj N; Kundu SC
    Biotechnol Adv; 2010; 28(3):325-47. PubMed ID: 20100560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uniform field electrospinning for 3D printing of fibrous configurations as strain sensors.
    Liu Q; Wu Q; Xie S; Zhao L; Chen Z; Ding Z; Li X
    Nanotechnology; 2019 Sep; 30(37):375301. PubMed ID: 31195376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.
    Liu YK; Lee MT
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14576-82. PubMed ID: 25076124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrospinning onto Insulating Substrates by Controlling Surface Wettability and Humidity.
    Choi W; Kim GH; Shin JH; Lim G; An T
    Nanoscale Res Lett; 2017 Nov; 12(1):610. PubMed ID: 29185132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel direct fibre generation technique for preparing functionalized and compound scaffolds and membranes for applications within the life sciences.
    Arumuganathar S; Jayasinghe SN
    Biomed Mater; 2007 Sep; 2(3):189-95. PubMed ID: 18458471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Type-Independent 3D Writing and Nano-Patterning of Confined Biopolymers.
    Yang U; Kang B; Yong MJ; Yang DH; Choi SY; Je JH; Oh SS
    Adv Sci (Weinh); 2023 May; 10(13):e2207403. PubMed ID: 36825681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Near-field electrospinning polycaprolactone microfibers to mimic arteriole-capillary-venule structure.
    Qavi I; Tan GZ
    Prog Biomater; 2021 Sep; 10(3):223-233. PubMed ID: 34553343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of poly (ϵ-caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell-based tissue engineering applications.
    Ko J; Mohtaram NK; Ahmed F; Montgomery A; Carlson M; Lee PC; Willerth SM; Jun MB
    J Biomater Sci Polym Ed; 2014; 25(1):1-17. PubMed ID: 23998440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.