These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27808094)

  • 1. Following lithiation fronts in paramagnetic electrodes with in situ magnetic resonance spectroscopic imaging.
    Tang M; Sarou-Kanian V; Melin P; Leriche JB; Ménétrier M; Tarascon JM; Deschamps M; Salager E
    Nat Commun; 2016 Nov; 7():13284. PubMed ID: 27808094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries.
    Sathiya M; Leriche JB; Salager E; Gourier D; Tarascon JM; Vezin H
    Nat Commun; 2015 Feb; 6():6276. PubMed ID: 25662295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.
    Blanc F; Leskes M; Grey CP
    Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 7Li MRI of Li batteries reveals location of microstructural lithium.
    Chandrashekar S; Trease NM; Chang HJ; Du LS; Grey CP; Jerschow A
    Nat Mater; 2012 Feb; 11(4):311-5. PubMed ID: 22327745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing Lithiation of Graphite Composite Anodes in All-Solid-State Batteries Using
    Yamagishi Y; Morita H; Nomura Y; Igaki E
    J Phys Chem Lett; 2021 May; 12(19):4623-4627. PubMed ID: 33973790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphite Anodes for Li-Ion Batteries: An Electron Paramagnetic Resonance Investigation.
    Insinna T; Bassey EN; Märker K; Collauto A; Barra AL; Grey CP
    Chem Mater; 2023 Jul; 35(14):5497-5511. PubMed ID: 37521744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-destructive monitoring of charge-discharge cycles on lithium ion batteries using ⁷Li stray-field imaging.
    Tang JA; Dugar S; Zhong G; Dalal NS; Zheng JP; Yang Y; Fu R
    Sci Rep; 2013; 3():2596. PubMed ID: 24005580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolution of Lithium Deposition versus Intercalation of Graphite Anodes in Lithium Ion Batteries: An In Situ Electron Paramagnetic Resonance Study.
    Wang B; Le Fevre LW; Brookfield A; McInnes EJL; Dryfe RAW
    Angew Chem Int Ed Engl; 2021 Sep; 60(40):21860-21867. PubMed ID: 34297479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic Behavior of Active Materials Inside a TCNQ-Based Lithium-Ion Rechargeable Battery by in Situ 2D ESR Measurements.
    Kanzaki Y; Mitani S; Shiomi D; Morita Y; Takui T; Sato K
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43631-43640. PubMed ID: 30461254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging.
    Dutoit CE; Tang M; Gourier D; Tarascon JM; Vezin H; Salager E
    Nat Commun; 2021 Mar; 12(1):1410. PubMed ID: 33658494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-phase electrochemical lithiation in amorphous silicon.
    Wang JW; He Y; Fan F; Liu XH; Xia S; Liu Y; Harris CT; Li H; Huang JY; Mao SX; Zhu T
    Nano Lett; 2013 Feb; 13(2):709-15. PubMed ID: 23323743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paramagnetic electrodes and bulk magnetic susceptibility effects in the in situ NMR studies of batteries: application to Li1.08Mn1.92O4 spinels.
    Zhou L; Leskes M; Ilott AJ; Trease NM; Grey CP
    J Magn Reson; 2013 Sep; 234():44-57. PubMed ID: 23838525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Focused Ion Beam Scanning Electron Microscope Study of Microstructural Evolution of Single Tin Particle Anode for Li-Ion Batteries.
    Zhou X; Li T; Cui Y; Fu Y; Liu Y; Zhu L
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1733-1738. PubMed ID: 30605303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ atomic-scale imaging of electrochemical lithiation in silicon.
    Liu XH; Wang JW; Huang S; Fan F; Huang X; Liu Y; Krylyuk S; Yoo J; Dayeh SA; Davydov AV; Mao SX; Picraux ST; Zhang S; Li J; Zhu T; Huang JY
    Nat Nanotechnol; 2012 Nov; 7(11):749-56. PubMed ID: 23042490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Raman Mapping of Si Island Electrodes and Stress Modeling as a Function of Lithiation and Size.
    Wang H; Song Y; Ferrari VC; Kim NS; Lee SB; Albertus P; Rubloff G; Stewart DM
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40409-40418. PubMed ID: 37586096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-Lithiation of Li(Ni1-x-yMnxCoy)O2 Materials Enabling Enhancement of Performance for Li-Ion Battery.
    Wu Z; Ji S; Hu Z; Zheng J; Xiao S; Lin Y; Xu K; Amine K; Pan F
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15361-8. PubMed ID: 27237226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.