BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27808258)

  • 1. Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model.
    Healy S; McMahon J; Owens P; FitzGerald U
    Sci Rep; 2016 Nov; 6():36410. PubMed ID: 27808258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate.
    Hoepken HH; Korten T; Robinson SR; Dringen R
    J Neurochem; 2004 Mar; 88(5):1194-202. PubMed ID: 15009675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia.
    Bishop GM; Dang TN; Dringen R; Robinson SR
    Neurotox Res; 2011 Apr; 19(3):443-51. PubMed ID: 20431983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations.
    Healy S; McMahon JM; FitzGerald U
    Prog Neurobiol; 2017 Nov; 158():1-14. PubMed ID: 28855100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of iron by primary rat hepatocytes in long-term culture: changes in nuclear shape mediated by non-transferrin-bound forms of iron.
    Cable EE; Connor JR; Isom HC
    Am J Pathol; 1998 Mar; 152(3):781-92. PubMed ID: 9502420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional differences in late-onset iron deposition, ferritin, transferrin, astrocyte proliferation, and microglial activation after transient forebrain ischemia in rat brain.
    Kondo Y; Ogawa N; Asanuma M; Ota Z; Mori A
    J Cereb Blood Flow Metab; 1995 Mar; 15(2):216-26. PubMed ID: 7860655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles.
    Geppert M; Hohnholt MC; Nürnberger S; Dringen R
    Acta Biomater; 2012 Oct; 8(10):3832-9. PubMed ID: 22750736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron regulation in the brain at the cell and molecular level.
    Connor JR
    Adv Exp Med Biol; 1994; 356():229-38. PubMed ID: 7887227
    [No Abstract]   [Full Text] [Related]  

  • 9. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes.
    Petters C; Thiel K; Dringen R
    Nanotoxicology; 2016; 10(3):332-42. PubMed ID: 26287375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons.
    Thomsen MS; Andersen MV; Christoffersen PR; Jensen MD; Lichota J; Moos T
    Neurobiol Dis; 2015 Sep; 81():108-18. PubMed ID: 25801802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes.
    Kress GJ; Dineley KE; Reynolds IJ
    J Neurosci; 2002 Jul; 22(14):5848-55. PubMed ID: 12122047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Threshold-based segmentation of fluorescent and chromogenic images of microglia, astrocytes and oligodendrocytes in FIJI.
    Healy S; McMahon J; Owens P; Dockery P; FitzGerald U
    J Neurosci Methods; 2018 Feb; 295():87-103. PubMed ID: 29221640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of cell death and ferritin expression in response to cortical iron: implications for hypoxia-ischemia and stroke.
    Bishop GM; Robinson SR
    Brain Res; 2001 Jul; 907(1-2):175-87. PubMed ID: 11430901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility of very small superparamagnetic iron oxide nanoparticles in murine organotypic hippocampal slice cultures and the role of microglia.
    Pohland M; Glumm R; Wiekhorst F; Kiwit J; Glumm J
    Int J Nanomedicine; 2017; 12():1577-1591. PubMed ID: 28280327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells.
    Urrutia P; Aguirre P; Esparza A; Tapia V; Mena NP; Arredondo M; González-Billault C; Núñez MT
    J Neurochem; 2013 Aug; 126(4):541-9. PubMed ID: 23506423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury.
    Dougherty KD; Dreyfus CF; Black IB
    Neurobiol Dis; 2000 Dec; 7(6 Pt B):574-85. PubMed ID: 11114257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron toxicity in organotypic cultures of hippocampal slices: role of reactive oxygen species.
    Liu R; Liu W; Doctrow SR; Baudry M
    J Neurochem; 2003 Apr; 85(2):492-502. PubMed ID: 12675926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lipopolysaccharide on oligodendrocyte progenitor cells are mediated by astrocytes and microglia.
    Pang Y; Cai Z; Rhodes PG
    J Neurosci Res; 2000 Nov; 62(4):510-20. PubMed ID: 11070494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vulnerability of glial cells to hydrogen peroxide in cultured hippocampal slices.
    Feeney CJ; Frantseva MV; Carlen PL; Pennefather PS; Shulyakova N; Shniffer C; Mills LR
    Brain Res; 2008 Mar; 1198():1-15. PubMed ID: 18261717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta amyloid is neurotoxic in hippocampal slice cultures.
    Harrigan MR; Kunkel DD; Nguyen LB; Malouf AT
    Neurobiol Aging; 1995; 16(5):779-89. PubMed ID: 8532111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.