These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27808313)

  • 1. Through thick and thin: a microfluidic approach for continuous measurements of biofilm viscosity and the effect of ionic strength.
    Paquet-Mercier F; Parvinzadeh Gashti M; Bellavance J; Taghavi SM; Greener J
    Lab Chip; 2016 Nov; 16(24):4710-4717. PubMed ID: 27808313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic method and custom model for continuous, non-intrusive biofilm viscosity measurements under different nutrient conditions.
    Greener J; Parvinzadeh Gashti M; Eslami A; Zarabadi MP; Taghavi SM
    Biomicrofluidics; 2016 Nov; 10(6):064107. PubMed ID: 27965730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microfluidic Approach to Investigating a Synergistic Effect of Tobramycin and Sodium Dodecyl Sulfate on Pseudomonas aeruginosa Biofilms.
    Shin S; Ahmed I; Hwang J; Seo Y; Lee E; Choi J; Moon S; Hong JW
    Anal Sci; 2016; 32(1):67-73. PubMed ID: 26753708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in situ Raman spectroscopy-based microfluidic "lab-on-a-chip" platform for non-destructive and continuous characterization of Pseudomonas aeruginosa biofilms.
    Feng J; de la Fuente-Núñez C; Trimble MJ; Xu J; Hancock RE; Lu X
    Chem Commun (Camb); 2015 May; 51(43):8966-9. PubMed ID: 25929246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel microfluidic device for the in situ optical and mechanical analysis of bacterial biofilms.
    Mosier AP; Kaloyeros AE; Cady NC
    J Microbiol Methods; 2012 Oct; 91(1):198-204. PubMed ID: 22796059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mechanical Analysis of the Biofilm Streamer Nucleation and Geometry Characterization in Microfluidic Channels.
    Wang X; Hao M; Du X; Wang G; Matsushita J
    Comput Math Methods Med; 2016; 2016():7819403. PubMed ID: 27313658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic fluid description of bacterial biofilm material properties.
    Klapper I; Rupp CJ; Cargo R; Purvedorj B; Stoodley P
    Biotechnol Bioeng; 2002 Nov; 80(3):289-96. PubMed ID: 12226861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets.
    Das S; Kumar A
    Sci Rep; 2014 Nov; 4():7126. PubMed ID: 25410423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic platform with pH imaging for chemical and hydrodynamic stimulation of intact oral biofilms.
    Gashti MP; Asselin J; Barbeau J; Boudreau D; Greener J
    Lab Chip; 2016 Apr; 16(8):1412-9. PubMed ID: 26956837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm material properties as related to shear-induced deformation and detachment phenomena.
    Stoodley P; Cargo R; Rupp CJ; Wilson S; Klapper I
    J Ind Microbiol Biotechnol; 2002 Dec; 29(6):361-7. PubMed ID: 12483479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic effects on bacterial biofilm development in a microfluidic environment.
    Kim J; Kim HS; Han S; Lee JY; Oh JE; Chung S; Park HD
    Lab Chip; 2013 May; 13(10):1846-9. PubMed ID: 23576069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment.
    Orgad O; Oren Y; Walker SL; Herzberg M
    Biofouling; 2011 Aug; 27(7):787-98. PubMed ID: 21797737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical nitric oxide concentration for Pseudomonas aeruginosa biofilm reduction on polyurethane substrates.
    Neufeld BH; Reynolds MM
    Biointerphases; 2016 Sep; 11(3):031012. PubMed ID: 27604080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa.
    Körstgens V; Flemming HC; Wingender J; Borchard W
    Water Sci Technol; 2001; 43(6):49-57. PubMed ID: 11381972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-throughput integrated biofilm-on-a-chip platform for the investigation of combinatory physicochemical responses to chemical and fluid shear stress.
    Nguyen AV; Shourabi AY; Yaghoobi M; Zhang S; Simpson KW; Abbaspourrad A
    PLoS One; 2022; 17(8):e0272294. PubMed ID: 35960726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic wound model for studying the behaviors of Pseudomonas aeruginosa in polymicrobial biofilms.
    Wright E; Neethirajan S; Weng X
    Biotechnol Bioeng; 2015 Nov; 112(11):2351-9. PubMed ID: 25994926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of electrostatic interactions in cohesion of bacterial biofilms.
    Chen X; Stewart PS
    Appl Microbiol Biotechnol; 2002 Sep; 59(6):718-20. PubMed ID: 12226730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms.
    Sánchez-Gómez S; Ferrer-Espada R; Stewart PS; Pitts B; Lohner K; Martínez de Tejada G
    BMC Microbiol; 2015 Jul; 15():137. PubMed ID: 26149536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypothesis for the role of nutrient starvation in biofilm detachment.
    Hunt SM; Werner EM; Huang B; Hamilton MA; Stewart PS
    Appl Environ Microbiol; 2004 Dec; 70(12):7418-25. PubMed ID: 15574944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro activity of ceftolozane/tazobactam against clinical isolates of Pseudomonas aeruginosa in the planktonic and biofilm states.
    Velez Perez AL; Schmidt-Malan SM; Kohner PC; Karau MJ; Greenwood-Quaintance KE; Patel R
    Diagn Microbiol Infect Dis; 2016 Jul; 85(3):356-359. PubMed ID: 27130477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.