These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 27808334)

  • 1. High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration.
    Lee J; Kim T; Jung Y; Jung K; Park J; Lee DM; Jeong HS; Hwang JY; Park CR; Lee KH; Kim SM
    Nanoscale; 2016 Dec; 8(45):18972-18979. PubMed ID: 27808334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of a multifunctional carbon nanotube "cotton" yarn by the direct chemical vapor deposition spinning process.
    Zhong XH; Li YL; Feng JM; Kang YR; Han SS
    Nanoscale; 2012 Sep; 4(18):5614-8. PubMed ID: 22864939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for the strength of yarn-like carbon nanotube fibers.
    Vilatela JJ; Elliott JA; Windle AH
    ACS Nano; 2011 Mar; 5(3):1921-7. PubMed ID: 21348503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic Modulation of Carbon Nanotube Growth in Direct Spinning for High-Strength Carbon Nanotube Fibers.
    Hu Z; Sun X; Zhang X; Jia X; Feng X; Cui M; Gao E; Qian L; Gao X; Zhang J
    J Am Chem Soc; 2024 Apr; ():. PubMed ID: 38600631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable High Tensile Modulus Composite Laminates Using Continuous Carbon Nanotube Yarns for Aerospace Applications.
    Evers CE; Vondrasek B; Jolowsky CN; Park JG; Czabaj MW; Ku BE; Thagard KR; Odegard GM; Liang Z
    ACS Appl Nano Mater; 2023 Jul; 6(13):11260-11268. PubMed ID: 37469508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced mechanical strength and electrical conductivity of carbon-nanotube/TiC hybrid fibers.
    Yi Q; Dai X; Zhao J; Sun Y; Lou Y; Su X; Li Q; Sun B; Zheng H; Shen M; Wang Q; Zou G
    Nanoscale; 2013 Aug; 5(15):6923-7. PubMed ID: 23787809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-step process to improve the mechanical properties of carbon nanotube yarn.
    Evora MC; Lu X; Hiremath N; Kang NG; Hong K; Uribe R; Bhat G; Mays J
    Beilstein J Nanotechnol; 2018; 9():545-554. PubMed ID: 29527431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the tensile properties of continuous millimeter-scale carbon nanotube fibers by densification.
    Hill FA; Havel TF; Hart AJ; Livermore C
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7198-207. PubMed ID: 23876225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong Carbon Nanotube Fibers by Drawing Inspiration from Polymer Fiber Spinning.
    Alemán B; Reguero V; Mas B; Vilatela JJ
    ACS Nano; 2015 Jul; 9(7):7392-8. PubMed ID: 26082976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of carbon nanotube fibers at extreme temperatures.
    Zhang C; Song Y; Zhang H; Lv B; Qiao J; Yu N; Zhang Y; Di J; Li Q
    Nanoscale; 2019 Mar; 11(10):4585-4590. PubMed ID: 30809624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Millisecond tension-annealing for enhancing carbon nanotube fibers.
    Song Y; Di J; Zhang C; Zhao J; Zhang Y; Hu D; Li M; Zhang Z; Wei H; Li Q
    Nanoscale; 2019 Aug; 11(29):13909-13916. PubMed ID: 31304941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of carbon nanotube fiber compressive properties using tensile recoil measurement.
    Zu M; Lu W; Li QW; Zhu Y; Wang G; Chou TW
    ACS Nano; 2012 May; 6(5):4288-97. PubMed ID: 22494330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic Mechanically Enhanced Carbon Nanotube Fibers by Silk Fibroin Infiltration.
    Yin Z; Liang X; Zhou K; Li S; Lu H; Zhang M; Wang H; Xu Z; Zhang Y
    Small; 2021 May; 17(19):e2100066. PubMed ID: 33792159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bottom-Up Synthesis and Mechanical Behavior of Refractory Coatings Made of Carbon Nanotube-Hafnium Diboride Composites.
    Sandin C; Talukdar TK; Abelson JR; Tawfick S
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1487-1495. PubMed ID: 30543416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of CNT Oxidation on the Processing and Properties of Superacid-Spun CNT Fibers.
    Cheng K; Cheng L; Jiang X; Wang Z; Pan J; Fang N; Zhang Z; Qu S; Lyu W
    Chem Asian J; 2024 Jul; ():e202400327. PubMed ID: 38987921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally Reduced Graphene Oxide/Carbon Nanotube Composite Films for Thermal Packaging Applications.
    Yuan GJ; Xie JF; Li HH; Shan B; Zhang XX; Liu J; Li L; Tian YZ
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 32284495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotube Reinforced Strong Carbon Matrix Composites.
    Zhang S; Ma Y; Suresh L; Hao A; Bick M; Tan SC; Chen J
    ACS Nano; 2020 Aug; 14(8):9282-9319. PubMed ID: 32790347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning.
    Ryu SW; Hwang JW; Hong SH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5653-7. PubMed ID: 22966627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor.
    Cui Y; Zhang M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8173-8. PubMed ID: 23901778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective reinforcement of electrical conductivity and strength of carbon nanotube fibers by silver-paste-liquid infiltration processing.
    Zhong XH; Wang R; Wen YY
    Phys Chem Chem Phys; 2013 Mar; 15(11):3861-5. PubMed ID: 23399977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.