These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27808335)

  • 21. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study.
    Stieger M; Pedersen JS; Lindner P; Richtering W
    Langmuir; 2004 Aug; 20(17):7283-92. PubMed ID: 15301516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effective electrostatic interactions arising in core-shell charged microgel suspensions with added salt.
    Moncho-Jordá A; Anta JA; Callejas-Fernández J
    J Chem Phys; 2013 Apr; 138(13):134902. PubMed ID: 23574255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Absorption of cetylpyridinium chloride into poly(N-isopropylacrylamide)-based microgel particles, in dispersion and as surface-deposited monolayers.
    Nerapusri V; Keddie JL; Vincent B; Bushnak IA
    Langmuir; 2007 Sep; 23(19):9572-7. PubMed ID: 17685638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of chain length on the interaction between modified organic salts containing hydrocarbon chains and poly(N-isopropylacrylamide-co-acrylic acid) microgel particles.
    Fan K; Bradley M; Vincent B; Faul CF
    Langmuir; 2011 Apr; 27(8):4362-70. PubMed ID: 21410203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polymer Conformations in Ionic Microgels in the Presence of Salt: Theoretical and Mesoscale Simulation Results.
    Kobayashi H; Halver R; Sutmann G; Winkler RG
    Polymers (Basel); 2017 Jan; 9(1):. PubMed ID: 30970691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microgel particles containing methacrylic acid: pH-triggered swelling behaviour and potential for biomaterial application.
    Lally S; Mackenzie P; LeMaitre CL; Freemont TJ; Saunders BR
    J Colloid Interface Sci; 2007 Dec; 316(2):367-75. PubMed ID: 17765913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dielectric and electrophoretic response of montmorillonite particles as function of ionic strength.
    Tsujimoto Y; Chassagne C; Adachi Y
    J Colloid Interface Sci; 2013 Aug; 404():72-9. PubMed ID: 23684223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of non-equilibrium association-dissociation processes in the dynamic electrophoretic mobility and dielectric response of realistic salt-free concentrated suspensions.
    Carrique F; Ruiz-Reina E; Lechuga L; Arroyo FJ; Delgado Á
    Adv Colloid Interface Sci; 2013 Dec; 201-202():57-67. PubMed ID: 24161224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How small can poly(N-isopropylacrylamide) nanogels be prepared by controlling the size with surfactant?
    Kardos A; Gilányi T; Varga I
    J Colloid Interface Sci; 2019 Dec; 557():793-806. PubMed ID: 31580975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Charge-induced self-assembly of 2-dimensional thermosensitive microgel particle patterns.
    Lu Y; Drechsler M
    Langmuir; 2009 Nov; 25(22):13100-5. PubMed ID: 19839569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physics in ordered and disordered colloidal matter composed of poly(N-isopropylacrylamide) microgel particles.
    Yunker PJ; Chen K; Gratale MD; Lohr MA; Still T; Yodh AG
    Rep Prog Phys; 2014 May; 77(5):056601. PubMed ID: 24801604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(N-isopropylacrylamide) microgels at the oil-water interface: temperature effect.
    Li Z; Richtering W; Ngai T
    Soft Matter; 2014 Sep; 10(33):6182-91. PubMed ID: 25010011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of single-particle compressibility on the fluid-solid phase transition for ionic microgel suspensions.
    Pelaez-Fernandez M; Souslov A; Lyon LA; Goldbart PM; Fernandez-Nieves A
    Phys Rev Lett; 2015 Mar; 114(9):098303. PubMed ID: 25793859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly(vinylpyridine) core/poly(N-isopropylacrylamide) shell microgel particles: their characterization and the uptake and release of an anionic surfactant.
    Bradley M; Vincent B
    Langmuir; 2008 Mar; 24(6):2421-5. PubMed ID: 18294014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and characterization of microgels sensitive toward copper II ions.
    Muratalin M; Luckham PF
    J Colloid Interface Sci; 2013 Apr; 396():1-8. PubMed ID: 23403115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physical aging and phase behavior of multiresponsive microgel colloidal dispersions.
    Meng Z; Cho JK; Breedveld V; Lyon LA
    J Phys Chem B; 2009 Apr; 113(14):4590-9. PubMed ID: 19298093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Equilibrium and kinetic aspects of the uptake of poly(ethylene oxide) by copolymer microgel particles of N-isopropylacrylamide and acrylic acid.
    Bradley M; Ramos J; Vincent B
    Langmuir; 2005 Feb; 21(4):1209-15. PubMed ID: 15697262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and dynamics of loosely cross-linked ionic microgel dispersions in the fluid regime.
    Holmqvist P; Mohanty PS; Nägele G; Schurtenberger P; Heinen M
    Phys Rev Lett; 2012 Jul; 109(4):048302. PubMed ID: 23006114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insight into the electrical properties and chain conformation of spherical polyelectrolyte brushes by dielectric spectroscopy.
    Guo X; Zhao K
    J Phys Condens Matter; 2017 Feb; 29(5):055102. PubMed ID: 27941218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Swelling of ionic microgel particles in the presence of excluded-volume interactions: a density functional approach.
    Moncho-Jordá A; Dzubiella J
    Phys Chem Chem Phys; 2016 Feb; 18(7):5372-85. PubMed ID: 26818708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.