These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27809230)

  • 1. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization.
    Huang J; Yu X; Wang Y; Xiao X
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27809230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost-Effective Wearable Indoor Localization and Motion Analysis via the Integration of UWB and IMU.
    Zhang H; Zhang Z; Gao N; Xiao Y; Meng Z; Li Z
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel sensor-assisted RFID-based indoor tracking system for the elderly living alone.
    Hsu CC; Chen JH
    Sensors (Basel); 2011; 11(11):10094-113. PubMed ID: 22346631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tests of wireless wearable sensor system in joint angle measurement of lower limbs.
    Watanabe T; Saito H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5469-72. PubMed ID: 22255575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Posture Recognition Method Based on Indoor Positioning Technology.
    Huang X; Wang F; Zhang J; Hu Z; Jin J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30917494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indoor localization using pedestrian dead reckoning updated with RFID-based fiducials.
    House S; Connell S; Milligan I; Austin D; Hayes TL; Chiang P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7598-601. PubMed ID: 22256097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors.
    Yeoh WS; Pek I; Yong YH; Chen X; Waluyo AB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5184-7. PubMed ID: 19163885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematic Model-Based Pedestrian Dead Reckoning for Heading Correction and Lower Body Motion Tracking.
    Lee MS; Ju H; Song JW; Park CG
    Sensors (Basel); 2015 Nov; 15(11):28129-53. PubMed ID: 26561814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.
    Qi Y; Soh CB; Gunawan E; Low KS
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system.
    Watanabe T; Saito H; Koike E; Nitta K
    Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of wearable technology for performance assessment: a validation study.
    Papi E; Osei-Kuffour D; Chen YM; McGregor AH
    Med Eng Phys; 2015 Jul; 37(7):698-704. PubMed ID: 25937613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of Daily Activities for the Elderly Using Wearable Sensors.
    Liu J; Sohn J; Kim S
    J Healthc Eng; 2017; 2017():8934816. PubMed ID: 29317996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indoor magnetic signature based localization algorithm without person-dependent parameter calibration.
    Suh YS; Amarbayasgalan B
    Sensors (Basel); 2014 Aug; 14(8):14375-98. PubMed ID: 25106021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic identification of inertial sensor placement on human body segments during walking.
    Weenk D; van Beijnum BJ; Baten CT; Hermens HJ; Veltink PH
    J Neuroeng Rehabil; 2013 Mar; 10():31. PubMed ID: 23517757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. User localization in complex environments by multimodal combination of GPS, WiFi, RFID, and pedometer technologies.
    Dao TK; Nguyen HL; Pham TT; Castelli E; Nguyen VT; Nguyen DV
    ScientificWorldJournal; 2014; 2014():814538. PubMed ID: 25147866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An RFID-based on-lens sensor system for long-term IOP monitoring.
    Hsu SH; Chiou JC; Liao YT; Yang TS; Kuei CK; Wu TW; Huang YC
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7526-9. PubMed ID: 26738033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A magnetometer-free indoor human localization based on loosely coupled IMU/UWB fusion.
    Zihajehzadeh S; Yoon PK; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3141-4. PubMed ID: 26736958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.