These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27809317)

  • 1. A microfluidics-based method for measuring neuronal activity in Drosophila chemosensory neurons.
    van Giesen L; Neagu-Maier GL; Kwon JY; Sprecher SG
    Nat Protoc; 2016 Dec; 11(12):2389-2400. PubMed ID: 27809317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Physiological Responses of Drosophila Sensory Neurons to Lipid Pheromones Using Live Calcium Imaging.
    Shankar S; Calvert ME; Yew JY
    J Vis Exp; 2016 Apr; (110):. PubMed ID: 27168110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic devices for imaging neurological response of Drosophila melanogaster larva to auditory stimulus.
    Ghaemi R; Rezai P; Iyengar BG; Selvaganapathy PR
    Lab Chip; 2015 Feb; 15(4):1116-22. PubMed ID: 25536889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fly-on-a-Chip: Microfluidics for Drosophila melanogaster Studies.
    Zabihihesari A; Hilliker AJ; Rezai P
    Integr Biol (Camb); 2019 Dec; 11(12):425-443. PubMed ID: 31965192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical communication in insects: the peripheral odour coding system of Drosophila melanogaster.
    Tunstall NE; Warr CG
    Adv Exp Med Biol; 2012; 739():59-77. PubMed ID: 22399395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous recording of calcium signals from identified neurons and feeding behavior of Drosophila melanogaster.
    Yoshihara M
    J Vis Exp; 2012 Apr; (62):. PubMed ID: 22565656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lab-on-chips for manipulation of small-scale organisms to facilitate imaging of neurons and organs.
    Ardeshiri R; Rezai P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5749-5752. PubMed ID: 28269560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Compression of Drosophila Embryos Using Rapid Fabrication Microfluidic Devices.
    Levis M; Sacco F; Velagala V; Ontiveros F; Zartman JJ
    Methods Mol Biol; 2024; 2805():153-160. PubMed ID: 39008180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators.
    Tian L; Hires SA; Mao T; Huber D; Chiappe ME; Chalasani SH; Petreanu L; Akerboom J; McKinney SA; Schreiter ER; Bargmann CI; Jayaraman V; Svoboda K; Looger LL
    Nat Methods; 2009 Dec; 6(12):875-81. PubMed ID: 19898485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On chip cryo-anesthesia of Drosophila larvae for high resolution in vivo imaging applications.
    Chaudhury AR; Insolera R; Hwang RD; Fridell YW; Collins C; Chronis N
    Lab Chip; 2017 Jun; 17(13):2303-2322. PubMed ID: 28613308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Packaging commercial CMOS chips for lab on a chip integration.
    Datta-Chaudhuri T; Abshire P; Smela E
    Lab Chip; 2014 May; 14(10):1753-66. PubMed ID: 24682025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automated microfluidic platform for calcium imaging of chemosensory neurons in Caenorhabditis elegans.
    Chokshi TV; Bazopoulou D; Chronis N
    Lab Chip; 2010 Oct; 10(20):2758-63. PubMed ID: 20820480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connectivity of chemosensory neurons is controlled by the gene poxn in Drosophila.
    Nottebohm E; Dambly-Chaudière C; Ghysen A
    Nature; 1992 Oct; 359(6398):829-32. PubMed ID: 1436059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep- and wake-dependent changes in neuronal activity and reactivity demonstrated in fly neurons using in vivo calcium imaging.
    Bushey D; Tononi G; Cirelli C
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4785-90. PubMed ID: 25825756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic worm-chip for in vivo analysis of neuronal activity upon dynamic chemical stimulations.
    Wang J; Feng X; Du W; Liu BF
    Anal Chim Acta; 2011 Sep; 701(1):23-8. PubMed ID: 21763804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open access tool and microfluidic devices for phenotypic quantification of heart function of intact fruit fly and zebrafish larvae.
    Zabihihesari A; Khalili A; Hilliker AJ; Rezai P
    Comput Biol Med; 2021 May; 132():104314. PubMed ID: 33774273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A programmable platform for sub-second multichemical dynamic stimulation and neuronal functional imaging in C. elegans.
    Rouse T; Aubry G; Cho Y; Zimmer M; Lu H
    Lab Chip; 2018 Jan; 18(3):505-513. PubMed ID: 29313542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated hybrid microfluidic device for oviposition-based chemical screening of adult Drosophila melanogaster.
    Leung JC; Hilliker AJ; Rezai P
    Lab Chip; 2016 Feb; 16(4):709-19. PubMed ID: 26768402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of complex larval chemosensory organs into the adult nervous system of Drosophila.
    Gendre N; Lüer K; Friche S; Grillenzoni N; Ramaekers A; Technau GM; Stocker RF
    Development; 2004 Jan; 131(1):83-92. PubMed ID: 14645122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.