These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27809325)

  • 1. Designing high performance metal-mMoS
    Su J; Feng L; Zeng W; Liu Z
    Phys Chem Chem Phys; 2016 Nov; 18(45):31092-31100. PubMed ID: 27809325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Study on Electronic Structures of Sc and Ti Contacts with Monolayer and Multilayer MoS2.
    Li Z; Li X; Yang J
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12981-7. PubMed ID: 26018612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the electronic and geometric structures of 2D insertions to realize high performance metal/insertion-MoS
    Su J; Feng L; Zeng W; Liu Z
    Nanoscale; 2017 Jun; 9(22):7429-7441. PubMed ID: 28530290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-invasively improving the Schottky barriers of metal-MoS
    Su J; Feng L; Liu S; Liu Z
    Phys Chem Chem Phys; 2017 Aug; 19(31):20582-20592. PubMed ID: 28731119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Schottky barrier engineering via adsorbing gases at the sulfur vacancies in the metal-MoS
    Su J; Feng L; Zhang Y; Liu Z
    Nanotechnology; 2017 Mar; 28(10):105204. PubMed ID: 28177928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the transport properties of metal/MoS
    Guo R; Su J; Zhang P; He F; Lin Z; Zhang J; Chang J; Hao Y
    Nanotechnology; 2020 Nov; 31(48):485204. PubMed ID: 32931467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles study of vacancy defects at interfaces between monolayer MoS
    Qiu X; Wang Y; Jiang Y
    RSC Adv; 2020 Aug; 10(48):28725-28730. PubMed ID: 35520034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.
    Su J; Feng L; Zhang Y; Liu Z
    Phys Chem Chem Phys; 2016 Jun; 18(25):16882-9. PubMed ID: 27282959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable Schottky barriers between MoS2 and permalloy.
    Wang W; Liu Y; Tang L; Jin Y; Zhao T; Xiu F
    Sci Rep; 2014 Nov; 4():6928. PubMed ID: 25370911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-invasively improving the Schottky barrier of MoS
    Fang Q; Zhao X; Yuan L; Wang B; Xia C; Ma F
    Phys Chem Chem Phys; 2021 Jul; 23(27):14796-14802. PubMed ID: 34198313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promising Approach for High-Performance MoS
    Su J; Feng LP; Zheng X; Hu C; Lu H; Liu Z
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40940-40948. PubMed ID: 29083857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide as a promising hole injection layer for MoSâ‚‚-based electronic devices.
    Musso T; Kumar PV; Foster AS; Grossman JC
    ACS Nano; 2014 Nov; 8(11):11432-9. PubMed ID: 25347209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning electronic structure of monolayer InP
    Li Z; Qian M; Song L; Ma L; Qiu H; Zeng XC
    Phys Chem Chem Phys; 2019 Jan; 21(3):1285-1293. PubMed ID: 30569927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations.
    Zhong H; Quhe R; Wang Y; Ni Z; Ye M; Song Z; Pan Y; Yang J; Yang L; Lei M; Shi J; Lu J
    Sci Rep; 2016 Mar; 6():21786. PubMed ID: 26928583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient Experimental Approach to Evaluate Metal to 2D Semiconductor Interfaces in Vertical Diodes with Asymmetric Metal Contacts.
    Kim S; Shin DH; Kim YS; Lee IH; Lee CW; Seo S; Jung S
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27705-27712. PubMed ID: 34082527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on the electronic and interfacial structures of monolayer ReS
    Wang J; Yang G; Sun R; Yan P; Lu Y; Xue J; Chen G
    Phys Chem Chem Phys; 2017 Oct; 19(39):27052-27058. PubMed ID: 28959803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Interfacial Electronic Properties on Phonon Transport in Two-Dimensional MoS
    Yan Z; Chen L; Yoon M; Kumar S
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33299-33306. PubMed ID: 27934181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of charge redistribution at the metal-semiconductor and semiconductor-semiconductor interfaces of metal-bilayer MoS
    Wang Q; Shao Y; Shi X
    J Chem Phys; 2020 Jun; 152(24):244701. PubMed ID: 32610946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications.
    Shanmugam M; Jacobs-Gedrim R; Song ES; Yu B
    Nanoscale; 2014 Nov; 6(21):12682-9. PubMed ID: 25210837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.