These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 27809470)
1. Hypoxia-Mimicking Nanofibrous Scaffolds Promote Endogenous Bone Regeneration. Yao Q; Liu Y; Tao J; Baumgarten KM; Sun H ACS Appl Mater Interfaces; 2016 Nov; 8(47):32450-32459. PubMed ID: 27809470 [TBL] [Abstract][Full Text] [Related]
2. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. Yao Q; Liu Y; Selvaratnam B; Koodali RT; Sun H J Control Release; 2018 Jun; 279():69-78. PubMed ID: 29649529 [TBL] [Abstract][Full Text] [Related]
3. Deferoxamine released from poly(lactic-co-glycolic acid) promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis. Jia P; Chen H; Kang H; Qi J; Zhao P; Jiang M; Guo L; Zhou Q; Qian ND; Zhou HB; Xu YJ; Fan Y; Deng LF J Biomed Mater Res A; 2016 Oct; 104(10):2515-27. PubMed ID: 27227768 [TBL] [Abstract][Full Text] [Related]
4. Hypoxia-mimicking 3D bioglass-nanoclay scaffolds promote endogenous bone regeneration. Zheng X; Zhang X; Wang Y; Liu Y; Pan Y; Li Y; Ji M; Zhao X; Huang S; Yao Q Bioact Mater; 2021 Oct; 6(10):3485-3495. PubMed ID: 33817422 [TBL] [Abstract][Full Text] [Related]
5. Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration. Geng M; Zhang Q; Gu J; Yang J; Du H; Jia Y; Zhou X; He C Biomater Sci; 2021 Apr; 9(7):2631-2646. PubMed ID: 33595010 [TBL] [Abstract][Full Text] [Related]
6. Novel three-dimensional bioglass functionalized gelatin nanofibrous scaffolds for bone regeneration. Zheng X; Liu Y; Liu Y; Pan Y; Yao Q J Biomed Mater Res B Appl Biomater; 2021 Apr; 109(4):517-526. PubMed ID: 32864862 [TBL] [Abstract][Full Text] [Related]
7. Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect. Kuttappan S; Mathew D; Jo JI; Tanaka R; Menon D; Ishimoto T; Nakano T; Nair SV; Nair MB; Tabata Y Acta Biomater; 2018 Sep; 78():36-47. PubMed ID: 30067947 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. Ye K; Liu D; Kuang H; Cai J; Chen W; Sun B; Xia L; Fang B; Morsi Y; Mo X J Colloid Interface Sci; 2019 Jan; 534():625-636. PubMed ID: 30265990 [TBL] [Abstract][Full Text] [Related]
9. Spatial Delivery of Triple Functional Nanoparticles via an Extracellular Matrix-Mimicking Coaxial Scaffold Synergistically Enhancing Bone Regeneration. Xing D; Zuo W; Chen J; Ma B; Cheng X; Zhou X; Qian Y ACS Appl Mater Interfaces; 2022 Aug; 14(33):37380-37395. PubMed ID: 35946874 [TBL] [Abstract][Full Text] [Related]
10. Nanoclay-functionalized 3D nanofibrous scaffolds promote bone regeneration. Yao Q; Fuglsby KE; Zheng X; Sun H J Mater Chem B; 2020 May; 8(17):3842-3851. PubMed ID: 32219244 [TBL] [Abstract][Full Text] [Related]
11. Synergetic Cues of Bioactive Nanoparticles and Nanofibrous Structure in Bone Scaffolds to Stimulate Osteogenesis and Angiogenesis. Kim JJ; El-Fiqi A; Kim HW ACS Appl Mater Interfaces; 2017 Jan; 9(3):2059-2073. PubMed ID: 28029246 [TBL] [Abstract][Full Text] [Related]
12. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
13. M2 macrophage-derived exosome-functionalized topological scaffolds regulate the foreign body response and the coupling of angio/osteoclasto/osteogenesis. Jin S; Wen J; Zhang Y; Mou P; Luo Z; Cai Y; Chen A; Fu X; Meng W; Zhou Z; Li J; Zeng W Acta Biomater; 2024 Mar; 177():91-106. PubMed ID: 38311198 [TBL] [Abstract][Full Text] [Related]
14. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue. Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105 [TBL] [Abstract][Full Text] [Related]
15. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552 [TBL] [Abstract][Full Text] [Related]
16. Osteoimmunity-Regulating Biomimetically Hierarchical Scaffold for Augmented Bone Regeneration. Zhang J; Tong D; Song H; Ruan R; Sun Y; Lin Y; Wang J; Hou L; Dai J; Ding J; Yang H Adv Mater; 2022 Sep; 34(36):e2202044. PubMed ID: 35785450 [TBL] [Abstract][Full Text] [Related]
18. Transplantation of copper-doped calcium polyphosphate scaffolds combined with copper (II) preconditioned bone marrow mesenchymal stem cells for bone defect repair. Li Y; Wang J; Wang Y; Du W; Wang S J Biomater Appl; 2018 Jan; 32(6):738-753. PubMed ID: 29295641 [TBL] [Abstract][Full Text] [Related]
19. Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Ko E; Lee JS; Kim H; Yang SY; Yang D; Yang K; Lee J; Shin J; Yang HS; Ryu W; Cho SW ACS Appl Mater Interfaces; 2018 Mar; 10(9):7614-7625. PubMed ID: 28475306 [TBL] [Abstract][Full Text] [Related]
20. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Liu H; Peng H; Wu Y; Zhang C; Cai Y; Xu G; Li Q; Chen X; Ji J; Zhang Y; OuYang HW Biomaterials; 2013 Jun; 34(18):4404-17. PubMed ID: 23515177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]