BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27809500)

  • 1. Following a Folding Transition with Capillary Electrophoresis and Ion Mobility Spectrometry.
    Barr JD; Shi L; Russell DH; Clemmer DE; Holliday AE
    Anal Chem; 2016 Nov; 88(22):10933-10939. PubMed ID: 27809500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing intermediates along the transition from polyproline I to polyproline II using ion mobility spectrometry-mass spectrometry.
    Shi L; Holliday AE; Shi H; Zhu F; Ewing MA; Russell DH; Clemmer DE
    J Am Chem Soc; 2014 Sep; 136(36):12702-11. PubMed ID: 25105554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion Mobility-Mass Spectrometry Reveals the Energetics of Intermediates that Guide Polyproline Folding.
    Shi L; Holliday AE; Glover MS; Ewing MA; Russell DH; Clemmer DE
    J Am Soc Mass Spectrom; 2016 Jan; 27(1):22-30. PubMed ID: 26362047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Wet" Versus "Dry" Folding of Polyproline.
    Shi L; Holliday AE; Bohrer BC; Kim D; Servage KA; Russell DH; Clemmer DE
    J Am Soc Mass Spectrom; 2016 Jun; 27(6):1037-47. PubMed ID: 27059978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent Mediation of Peptide Conformations: Polyproline Structures in Water, Methanol, Ethanol, and 1-Propanol as Determined by Ion Mobility Spectrometry-Mass Spectrometry.
    El-Baba TJ; Fuller DR; Hales DA; Russell DH; Clemmer DE
    J Am Soc Mass Spectrom; 2019 Jan; 30(1):77-84. PubMed ID: 30069641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of cis and trans Isomers of Polyproline by FAIMS Mass Spectrometry.
    Creese AJ; Cooper HJ
    J Am Soc Mass Spectrom; 2016 Dec; 27(12):2071-2074. PubMed ID: 27704474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Lived Intermediates in a Cooperative Two-State Folding Transition.
    El-Baba TJ; Kim D; Rogers DB; Khan FA; Hales DA; Russell DH; Clemmer DE
    J Phys Chem B; 2016 Dec; 120(47):12040-12046. PubMed ID: 27933943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of terminal (4R)-fluoroproline and (4S)-fluoroproline residues on polyproline conformation.
    Lin YJ; Horng JC
    Amino Acids; 2014 Oct; 46(10):2317-24. PubMed ID: 24947982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational preferences of proline oligopeptides.
    Kang YK; Jhon JS; Park HS
    J Phys Chem B; 2006 Sep; 110(35):17645-55. PubMed ID: 16942110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substance P in the Gas Phase: Conformational Changes and Dissociations Induced by Collisional Activation in a Drift Tube.
    Conant CR; Fuller DR; Zhang Z; Woodall DW; Russell DH; Clemmer DE
    J Am Soc Mass Spectrom; 2019 Jun; 30(6):932-945. PubMed ID: 30980379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the structures and folding of free proteins using 2-D gas-phase separations: observation of multiple unfolded conformers.
    Shvartsburg AA; Li F; Tang K; Smith RD
    Anal Chem; 2006 May; 78(10):3304-15. PubMed ID: 16689531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation and characterisation of beta2-microglobulin folding conformers by ion-exchange liquid chromatography and ion-exchange liquid chromatography-mass spectrometry.
    Bertoletti L; Regazzoni L; Aldini G; Colombo R; Abballe F; Caccialanza G; De Lorenzi E
    Anal Chim Acta; 2013 Apr; 771():108-14. PubMed ID: 23522119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the Terminal Aromatic Residues on Polyproline Conformation: Thermodynamic and Kinetic Studies.
    Lin YJ; Chu LK; Horng JC
    J Phys Chem B; 2015 Dec; 119(52):15796-806. PubMed ID: 26641495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers.
    Moradi M; Babin V; Roland C; Sagui C
    J Chem Phys; 2010 Sep; 133(12):125104. PubMed ID: 20886968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melting Proteins: Evidence for Multiple Stable Structures upon Thermal Denaturation of Native Ubiquitin from Ion Mobility Spectrometry-Mass Spectrometry Measurements.
    El-Baba TJ; Woodall DW; Raab SA; Fuller DR; Laganowsky A; Russell DH; Clemmer DE
    J Am Chem Soc; 2017 May; 139(18):6306-6309. PubMed ID: 28427262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoelectronic effects on polyproline conformation.
    Horng JC; Raines RT
    Protein Sci; 2006 Jan; 15(1):74-83. PubMed ID: 16373476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillary and Coulombic effects on the gas phase structure of electrosprayed concanavalin A ions and its clusters C(n)(+z) (n = 1-6).
    de la Mora JF; Borrajo-Pelaez R; Zurita-Gotor M
    J Phys Chem B; 2012 Aug; 116(33):9882-98. PubMed ID: 22780199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidimensional separations of ubiquitin conformers in the gas phase: relating ion cross sections to H/D exchange measurements.
    Robinson EW; Williams ER
    J Am Soc Mass Spectrom; 2005 Sep; 16(9):1427-1437. PubMed ID: 16023362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of gas-phase uranyl complexes enables rapid speciation using electrospray ionization and ion mobility-mass spectrometry.
    Davis AL; Clowers BH
    Talanta; 2018 Jan; 176():140-150. PubMed ID: 28917733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-induced transition between polyproline I and II helices: quantitative fitting of hysteresis effects.
    Kuemin M; Engel J; Wennemers H
    J Pept Sci; 2010 Oct; 16(10):596-600. PubMed ID: 20862727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.